
Static Semantics and Compiler Error Recovery

by

Robert Paul Corbett

June 1985

Sponsored by
Defense Advance Research Projects Agency (DoD)

Arpa Order No. 4871
Monitored by Naval Electronic Systems Command

under Contract No. N00039-84-C-0089

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 1985 2. REPORT TYPE

3. DATES COVERED
 00-00-1985 to 00-00-1985

4. TITLE AND SUBTITLE
Static Semantics and Compiler Error Recovery

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Good error recovery for compilers depends on accurate diagnosis of errors. When an error is
misdiagnosed, the error message issued for it is apt to be misleading. Worse, the error recovery system may
leave the compiler in a configuration that will cause spurious errors to be reported later. This dissertation
presents new error recovery techniques for compilers that generally diagnose errors more accurately than
earlier techniques. The major innovation embodied in the new error recovery techniques is the use of
general static semantic information to help detect and diagnose syntactic errors. There are usually many
possible ways of recovering from an error. Testing if a potential recovery leads to semantic problems later
involves executing the semantic actions associated with that recovery. If a potential recovery is rejected, the
semantic actions that were performed while testing it must have no apparent effect on later compilation.
Thus, it must be possible to undo the effects of semantic actions. For conventional compilers, the
mechanisms needed to reverse the effects of semantic actions are too slow to be practical. A new compiler
organization that permits semantic actions to be undone efficiently is presented. This new organization is
suited for compiling languages, such as C, Pascal, and Ada, that require declarations to precede uses. Two
further ways of improving the performance of error recovery systems are considered. Error recovery
systems sometimes fail to accurately diagnose an error because the parser has performed reductions based
on erroneous input. A variety of techniques for avoiding the adverse effects of such reductions are
presented and compared. Also, a new panic mode algorithm for use with LR parsers is presented. The new
error recovery techniques have been applied in an error checking program for Pascal. The recoveries
produced by that program are shown to compare favorably with those produced by two well known error
recovery systems. Finally, some drawbacks of the new techniques and some directions for future work are
discussed.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

178

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Static Semantics and Compiler Error Recovery

Robert Paul Corbett
Department of Electrical Engineering and Computer Science

Computer Science Division
University of California

Berkeley, California 94720

ABSTRACT

Good error recovery for compilers depends on accurate diagnosis of errors. When an

error is misdiagnosed, the error message issued for it is apt to be misleading. Worse, the

error recovery system may leave the compiler in a configuration that will cause spurious

errors to be reported later. This dissertation presents new error recovery techniques for

compilers that generally diagnose errors more accurately than earlier techniques.

The major innovation embodied in the new error recovery techniques is the use of

general static semantic information to help detect and diagnose syntactic errors. There

are usually many possible ways of recovering from an err-or. Testing if a potential

recovery leads to semantic problems later involves executing the semantic actions

associated with that recovery. If a potential recovery is rejected, the semantic actions

that were performed while testing it must have no apparent effect on later compilation.

Thus, it must be possible to undo the effects of semantic actions. For conventional

compilers, the mechanisms needed to reverse the effects of semantic actions are too slow

to be practical. A new compiler organization that permits semantic actions to be undone

efficiently is presented. This new organization is suited for compiling languages, such as

C, Pascal, and Ada, that require declarations to precede uses.

Two further ways of improving the performance of error recovery systems are

considered. Error recovery systems sometimes fail to accurately diagnose an error

because the parser has performed reductions based on the erroneous input. A variety of

techniques for avoiding the adverse effects of such reductions are presented and

compared. Also, a new panic mode algorithm for use with LR parsers is presented.

The new error recovery techniques have been applied in an error checking program

for Pascal. The recoveries produced by that program are shown to compare favorably

with those produced by two well known error recovery systems. Finally, some drawbacks

of the new techniques and some directions for future work are discussed.

Ill

Acknowledgements

I would like to express my deep gratitude to my dissertation advisor, Professor

Susan L. Graham, for her encouragement and understanding, and for her insights and

assistance which contributed greatly to this work. I would also like to express my

gratitude to the other members of my doctoral committee, Professors Paul N. Hilfinger

and Robert M. Solovay.

I would like to offer special thanks to my fellow student Michael C. Shebanow,

whose implementation of the algorithms presented in Chapter 7 was invaluable. I would

like to thank Gerald Fisher and Michael Burke for freely sharing their ideas and their

codes with me. I would like to thank Peter B. Kessler and Marshall K. McKusick for

providing the graph profiler gprof.

I would like to thank Benjamin Zorn, Eduardo Pelegrf-Llopart, and Phillip

Garrison for many discussions that helped clarify the concepts presented herein. I would

like to thank all those who graciously offered their counsel, but especially Professors

W. Kahan and Robert Fabry.

Particular thanks must be paid to my parents, Jeanette and Harvey Corbett,

without whose support and encouragement this work would not have been possible.

Finally, I would like to offer thanks to the National Science Foundation, Grant

MCS80-05144, and the Defense Advanced Research Projects Agency, Contracts N00039-

82-C-0235 and N00039-84-C-0089, for their financial support over the years.

•

v

Table of Contents

1 Introduction .. 1

2 Terminology ... 5

3 Previous Proposals for Semantics-directed Error Recovery 9

4 Semantics-directed Error Recovery ... 13

4.1 Local Recovery Algorithms for LR Parsers .. 13

4.2 Applying Semantics to Repairs ... 20

4.3 Semantics for Semantics-directed Repairs .. 21

5 A Model of Compilation for Semantics-directed Error Recovery 24

5.1 Attribute Grammars... 25

5.2 LL- and LR-attributed Grammars .. 25

5.3 A Practical Organization that Supports
Semantics-directed Error Recovery .. 28

5.4 Symbol Tables .. 30

6 Erroneous Reductions ... 39

6.1 General Backtracking ... 39

6.2 Suppressing Default Reductions :.......................... 40

6.3 Pretesting 42

6.4 LR(k) Error Checking via Stack Restoration ... 43

6.5 Limited Backtracking ... 44

6.6 Comparing the Techniques ... 46

7 Panic Mode for LR Parsers ... 48

7.1 Desirable Characteristics for Panic Mode Algorithms 48

7.2 Some Earlier Panic Mode Algorithms :... 50

7.2.1 Aho and Ullman's algorithm .. 50

7.2.2 Pai and Kieburtz' algorithm ... 50

7.2.3 Hartmann's algorithm .. 51

7.2.4 The Yacc algorithm .. 51

7.2.5 Burke and Fisher's algorithm ... 53

7 .2.6 Sippu and Soisalon-Soininen's algorithm .. 53

7 .2.7 Properties that lead to good panic mode recoveries 54

7.3 Panic Declarations 55

VI

7.4 The New Panic Mode Algorithm .. 59

7.5 Semantics and Panic Mode 64

8 An Implementation and Empirical Results ... 66

8.1 The Bison Parser Generator ... 66

8.2 The Parser 67

8.3 The Pascal Auditor's Error Recovery System .. 69

8.4 The Repairs .. 71

8.5 Reporting Errors .. 73

8.6 Space and Time 7 4

8.7 Examples of Use ... 77

8.8 Comparisons ... 77

9 Implementation Notes .. 82

9.1 Error Messages for Insertions ... 82

9.2 The Lexical Analyzer .. 83

9.3 Assigning Costs to Syntactic Repairs 84

9.4 Recording Repairs .. 85

9.5 The Spelling Matcher ... 85

10 Future Work .. 88

New Test Suites for Error Recovery ... 88

10.2 Error Productions ... 89

10.3 Improving the Parser Generator :.. 91

10.4 Enhancing the Local Recovery Algorithm .. 92

10.5 Other Languages ... 94

11 Conclusions ... 96

Appendix A: The Grammar for the Pascal Auditor 99

Appendix B: Recoveries Produced with and without Semantics 109

Appendix C: Programs for which Berkeley
Pascal or the Burke-Fisher System
Outperform the Pascal Auditor .. 139

Appendix D: Some Examples for which the Pascal Auditor

Produces Better Recoveries than Berkeley Pascal 151

References... 163

Vll

Table of Figures

4.1 Example illustrating backtracking in Levy's algorithm 14

5.1 A sample LR-attributed grammar ... 28

5.2 Grammar for function calls without using inherited attributes 29

5.3 Grammar for function calls using inherited attributes .. 30

5.4 The look up algorithm ... 32

5.5 The algorithm for popping the scope ... 33

5.6 The back up routine .. 35

5.7 The restore routine .. 36

5.8 The reset routine ... 37

6.1 The function Shiftable .. 43

6.2 A semantic error requiring backtracking ... 45

7.1 Panic declarations for Pascal ... 58

7.2 The new panic mode algorithm 62

8.1 The Graham-Rhodes example .. 76

8.2 P. J. Brown's example ... 77

9.1 The spelling matcher ... 87

1

Introduction

Ideally, a compiler should detect and correctly identify every error in every program

submitted to it. That goal, regrettably, is unattainable. Many errors either cannot be

detected at compile time or are so difficult to detect that it is not practical to check for

them. Even when an error is detected, it is, in general, impossible to correctly diagnose

the error. Diagnosing an error involves guessing how a program deviates from the

programmer's intent. Through heuristics, those guesses can be made highly accurate.

Still, some failures must be expected.

The problem of providing good error recovery in a practical compiler is

compounded by the need for efficiency. To handle errors well, a compiler must record

information and perform tests that would otherwise be unnecessary. For example, to be

able to associate locations with errors, the position of each symbol in the source text

must be recorded. Those additional operations will cause the compiler to be slower. A

slow compiler is as undesirable as one that does not handle errors well. A practical

compiler must strike a balance between the efficiency and the power of its error recovery

system.

Error recovery is a four step process. The four steps are detection, diagnosis,

reporting, and patching. Detection consists of discovering the presence of an error.

Errors are often classified according to the part of the compiler by which they are

detected. Thus, errors detected by the lexical analyzer are called lexical errors, those

detected by the parser are called syntax errors, and those detected by semantic action

routines are called semantic errors. Diagnosis consists of guessing the location and

nature of the error. The results of the diagnosis are used when reporting and patching

the error. Reporting consists of providing the programmer with information to help him

identify the error. Patching consists of modifying the state of the compiler so that

compilation can continue.

Many error recovery techniques have been proposed. Among the most commonly

used techniques are

1. Error Productions. If a compiler writer anticipates that certain

syntax errors may occur, he can extend his grammar for the

language to be compiled to i,:1clude the erroneous constructs. Rules

that are part of such extensions are called error productions. The

compiler writer must provide for reporting errors handled by error

productions.

2. Local Recoveries. A local recovery is a recovery that is

determined by the immediate context in which the error was

detected. Most local recovery algorithms consider only simple

recovery actions such as insertion, deletion or replacement of single

symbols. Local recovery algorithms usually do not require the

compiler writer to supply any special information; any necessary

information is inferred from the parser. Many algorithms allow the

1

2

compiler writer to supply a small amount of information that is used

to fine-tune the choice of recoveries.

3. Panic Mode. A panic mode recovery consists of deleting symbols

from the remaining input until a recognized symbol or sequence of

symbols is at the head of the input. The parse stack is then

reconfigured so that parsing can continue over the remaining input.

Good error recovery systems typically incorporate the three recovery techniques

mentioned above and perhaps others as well. Recoveries that involve changes to the

program text at the token level only are customarily called repairs.

In theory, all syntax errors could be handled by error productions. If the grammar

for a language is extended to accept all possible input strings, no other syntactic error

recovery capabilities need be provided. However, a grammar capable of distinguishing

erroneous syntax from legal syntax for any input is apt to be large and of a form for

which efficient parsers cannot be constructed. Therefore, error productions are normally

used only for errors that cannot be handled well using other recovery techniques.

Error productions are often used to relax restrictions in the language to be

compiled. For example, in Pascal [ANS83], declarations must appear in a fixed order. If

a declaration occurs out of order, there is little chance that the error could be patched by

a local recovery. A panic mode recovery for such an error would be tantamount to

deleting the declaration. Many spurious semantic errors result from such a recovery.

Therefore, extending the grammar to allow declarations to appear in any order appears

to be the only way to handle such errors gracefully.

Local recoveries work best for simple errors. For example, consider the erroneous

Pascal code fragment

• . - i + 1
J .- 0;

where i and j are integer variables. The likely error is that a semicolon has been omitted

from the end of the first line. A good repair algorithm should determine that a semicolon

should be inserted between the two lines. A statistical study of errors in Pascal programs

[RD78] has shown that, for Pascal at least, local recovery techniques should be effective

for most common errors.

There are often many different local recoveries that could be used to patch an error.

For example, suppose the erroneous statement

a := m);

appears in a Pascal program. The apparent error is that the statement contains an

unmatched right parenthesis: The error could be patched by inserting a left parenthesis

before the identifier m or by deleting the right parenthesis. Either repair would seem

reasonable. However, the error could be patched just as effectively by replacing the right

parenthesis with a semicolon. That repair is apt to seem unreasonable to most

programmers. Many local recovery algorithms allow a compiler writer to bias the choice

of recoveries in favor of those he feels are desirable. The compiler writer is allowed to

assign costs to each possible recovery. \Vhenever there is a choice of local recoveries that

patch an error, the recovery whose cost is the lowest is selected.

Panic mode recoveries are useful when an error deviates so far from a legal text

that no simple correction can patch the error. Suppose, for example, that the Algol-like

statement

3

for i := 1 step 1 until n do S

appears in a Pascal program. It is unlikely that most local recovery algorithms could

patch such an error. In such cases, a panic mode recovery may provide the only way to

patch the error. Nonetheless, panic mode recoveries should only be used as a last resort

since the error messages produced by panic mode algorithms are usually less helpful than

those produced by other error recovery techniques.

The main goal of this work has been to develop techniques for diagnosing errors

more accurately than is done by earlier error recovery systems. Accurate diagnosis is the

key to good error recovery. The diagnosis of an error largely determines the way in

which the compiler will recover from it. If a diagnosis is incorrect, the resulting recovery

may cause spurious errors to be detected. Most good error recovery algorithms diagnose

an error by testing several possible diagnoses and selecting the one that seems the best.

One way of improving that process is to increase the number of diagnoses that are

considered since the correct diagnosis cannot be chosen if it is not considered. Another

way is to improve the criteria for selecting recoveries. Both techniques have been applied

in this work.

Most existing error handlers make no use of semantic information when diagnosing

syntax errors. As a result, they sometimes choose diagnoses that lead to spurious

semantic errors later. Consider the erroneous Pascal statement

if i j then skip

where i and j are integer variables. The probable error in this instance is that a

relational operator has been omitted between i and j. This example was submitted to

two well-known error handling systems. One of them recovered from the error by

inserting the operator '+' between i and j; the other by deleting j. In both cases, the

expression created to replace the predicate expression of the if-statement is of type

integer. Thus, both recoveries cause a spurious semantic error to be detected later since

the type of a predicate expression must be Boolean.

The major innovation of this work has been the creation of techniques for using

general static semantic information to help detect and diagnose syntax errors. Error

recovery algorithms that take advantage of semantic information will be called

semantics-directed. As the previous example demonstrates, use of semantic information

can improve the choice of error diagnoses. If semantic information is to be used to help

diagnose syntax errors, it must be available while parsing. Hence, semantic analysis must

be carried out in tandem with parsing. Further, any semantic actions performed while

testing a potential diagnosis must not affect later stages of compilation if that diagnosis is

rejected. Therefore, semantics-directed error recovery requires that the compiler be

organized so that the effects of semantic actions can be reversed.

Syntax errors often go undetected until after the parser has performed actions that

make it hard to recover from them. For example, bottom-up parsers sometimes perform

reductions without examining the token to the right of the symbols involved in the

reductions. Consider, for example, the erroneous Pascal statement

n := m, + 1

The apparent error is the presence of a comma in a context where commas are not

allowed. If the error is detected before any reductions involving m are performed, a good

local recovery algorithm should determine that the comma should be deleted. However,

some parsers for Pascal will reduce the text preceding the comma to a statement in spite

4

of the presence of the comma. Unless the effects of the erroneous reductions can be

reversed, it is unlikely a good recovery will be found. An analogous problem for top

down parsers is discussed by Burke and Fisher [BF82].

Many good panic mode algorithms have been developed for top-down parsers. The

panic mode algorithms that have been proposed for LR parsers do not work nearly so

well. As a part of this work, an improved panic mode algorithm for LR parsers has been

developed.

An implementation is the best test of an error handling system. Many impractical

error handling techniques have been described in the literature. With but few exceptions,

those techniques either have not been implemented or have been implemented only for

unrealistic languages that do not expose their flaws. The new error recovery techniques

described in later chapters have been implemented as part of an error checking program

for Pascal called the Pascal auditor. Measurements of the Pascal auditor's speed and

space requirements show the practicality of the new techniques.

A new parser generator named Bison has been written to assist construction of

compilers using the new error recovery techniques. Bison was designed to support

experiments with a variety of error recovery techniques. The parsers produced by Bison

are faster than those produced by most other parser generators. Furthermore, Bison

itself is faster than most other parse generators because it is based on more modern

algorithms.

As a demonstration of the power of the new error recovery techniques, the Pascal

auditor has been compared with two well-known error handling systems. Ripley and

Druseikis [RD78] have created a sample of erroneous Pascal programs that has become a

standard test suite for error handling systems. The recoveries produced by the Pascal

auditor for that test suite have been compared with those produced by the other systems.

The remaining chapters are organized as follows. The next chapter introduces the

terminology and notation used in later chapters. Chapters 3 through 5 describe schemes

for using semantics to help detect and recover from errors. Chapter 6 explores

techniques for preventing or reversing the effects of erroneous reductions. Chapter 7

presents the new panic mode algorithm. Chapter 8 describes the Pascal auditor and the

empirical data obtained from it. The final chapters discuss lessons learned from the

implementation, directions for future work, and conclusions. All examples of errors

presented in the remaining chapters are taken from Pascal programs unless stated

otherwise.

2

Terminology

Let S be a set of symbols. A string over S is a finite sequence of symbols in S. The

empty sequence is called the empty string and is denoted by the Greek letter ~. The

length of a string a 1 ... a11 is n. For any symbol a, a /e is the string consisting of k

instances of a. Sic is the set of all strings over S of length k. s• is the set of all strings

over S (including ~). Let x = a 1 ..• am and y = b1 ••• b11 be any two strings. The

concatenation of x andy (in that order) is the string a 1 ••• amb 1 .:.b11 • Concatenation is

indicated by adjacency. For example, the concatenation of x, y, and z is denoted as xyz.

A string x is a prefix of a stringy if and only if y = xz for some z E s•.

Let V be a finite set of symbols, and let E be a proper subset of V. Let N denote

V- E. A production or rule over V and E is an ordered pair (A, x) where A EN and

X E v·. A production (A, x) is denoted as A- X. For any rule A-x, A is its left

hand side (lhs) and x is its right-hand side (rhs).

A context-free grammar G is a 4-tuple (V, E, P, S), where Vis a finite set of

symbols, E is a proper subset of V, Pis a finite set of productions over V and E, and

S E V. N denotes the set V- E. A symbol in E is a terminal symbol, and a symbol in

N is a nonterminal symbol. The symbol S is the start symbol.

For any two strings x, y E v•, the relation x ==:} y is true if and only if x = sZt,

y = szt, and Z - z E P, for some Z E N and s, t, z E v•. The relation x ~ y is true

if and only if x = sZt, y = szt, and Z- z E P, for some ZEN, t E E•, and

s, z E v•. The symbol ~ denotes the reflexive transitive closure of ==:}, and ~ denotes

the reflexive transitive closure of~· A string x derives a stringy if and only if x ~ y.

A string x E v• is a sentential form of G if and only if S ~ x. A sentence of G is

a sentential form x such that x E E•. The language defined by G is the set of all

sentences of G and is denoted as L(G). A string x is a correct prefix if and only if x is

the prefix of a sentential form. A string x is a right sentential form if and only if

S ~ x. Let x = szt be a string such that S ~ sZt ~ szt. Then z is a handle of x.

A derivation tree T of G is a labeled ordered tree such that

1. Each interior node is labeled with a nonterminal symbol.

2. Each leaf node is labeled with a terminal symbol or)...

3. For each interior node v, let Vv ... , v11 be the immediate descendants

of v. Let A be the symbol labeling v. Then either

a) n = 1, v1 is labeled with~' and A - ~ E P, or

b) vv ... ,v11 are labeled with the symbols a 1, .•• ,a11 respectively,

and A- a1 ••• a11 E P.

A parse tree is a derivation tree whose root node is labeled with the start symbol S. The

frontier of a derivation tree Tis the string formed by concatenating the symbols labeling

the leaves of T in left to right order. The frontier of every parse tree is a sentence of G.

5

6

Every sentence is the frontier of at least one parse tree.

An LR(k) parsing automaton M is an 8-tuple (Q, V, E, P, f, g, q0 , $) where Q is a

finite set of states, Vis a finite set of symbols, E i&. a proper subset of V, Pis a finite set

of productions over V and E, f and g are functions, q0 E Q, and $ is a symbol such that

$ ~ V. Q is the state set of M. N denotes V- E. The symbols in E are the terminal

symbols and the symbols in N are the nonterminal symbols. Vs denotes V U { $ }, and

Es denotes E U { $}. The action set AS of M is the set

AS= {accept, shift, error} U {reduce p I p E P}.

The function f is the action function of M; it is a total function of the form

f: Q X Ef-AS. The function g is the go to function of M; it is a partial function of the

form g: Q XV- (Q - { q0}). For every state q E Q other than q0 , there is exactly one

symbol a such that g(p, a)= q for some p E Q. The symbol a is called the accessing

symbol of q. The state q0 is the start state. The symbol $ is the endmarker.

A configuration C of an LR(k) parsing automaton M is an ordered pair (r, x)

where r is a finite nonempty sequence of states in Q, and x E E$. The string x must be

of the form y$/c where y E E•. For any string x E r;•, the initial configuration of M

for xis (q0 , x$1c).

A move of an LR(k) parsing automaton M is a transition from one configuration to

another. For each configuration C, there is at most one configuration C' such that the

transition froiJl C to C' is a move. The relation between C and C' is denoted as

C f- C'. The relation f- is determined by the action and goto functions of M. Let

c = (r, x) where r = qi., ... ,qim and X = a1···an. Then the action(}' determined by M

for C is a= f(qim• a1···alc)· If a= shift, then C f- (qi 1 ••• qimq, a2 ••• an) where

q = g(q, a 1). If a= reduce p where p =A- b1 ... bll then C f- (qi
1
••• q1m-tq, x}

where q = g(qm-l• A). If a =accept or a =error, there is no move from C.

A configuration C = (qi.···qim• x) is an accepting configuration if and only if

x = $/c and f(qim• $/c)= accept. The parsing automaton M accepts a string x if and

only if there is a sequence of configurations C 11 ••• , Cn such that C 1 is the initial

configuration of M for x, Cn is an accepting configuration, and C 1 f- · · · f- Cn. The

language of M is the set of all strings that M accepts and is denoted as L(M}.

A configuration C = (qi 1 .
.. qim• a 1 ... an} is an error configuration if and only if

f(qim• a 1 ... a~c) =error. When the parsing automaton enters an error configuration, it

detects an error.

An attribute grammar AG consists of a context-free grammar G = (V, E, P, S)

augmented with attributes, semantic functions, and dependency vectors. For each

symbol X E V, there is a finite set A(X) of attributes. A(X} is partitioned into two

disjoint subsets, the inherited attributes I(X) and the synthesized attributes S(X).

The set I(S), where S is the start symbol, must be empty. If X is a terminal symbol,

then S(X) must be empty. The union of A(X) for all X E Vis A. Each attribute a E A

is associated with a (possibly infinite) universe U a of values.

For each production p = X 0 - X 1 ... Xn~ E P, there is an associated set of

semantic functions and dependency vectors. For each synthesized attribute q of X 0,

there is a function f&u. For each inherited attribute t of X~c, where 1 < k < nJl, there

is a function /C,. Each function fCa is defined over

Ua.X ... X Uam- Ua,

7

where m > 0, and ai E A for 1 < i ~ m. The arity of each semantic function may be

different.

Each semantic function !fa is paired with a dependency vector dfa. A dependency

vector indicates which values of the attributes of the symbols X 0 , •.• ,Xn., are to be the

arguments of the matching semantic function. The number of elements in each

dependency vector must equal the arity of the corresponding semantic function. An

attribute a of the symbol Xi, 1 < i < n,, can be represented by the ordered pair (i, a).

Each element of a dependency vector is an ordered pair of that form. If the i·th element

of dfa is (i, a), then the domain of the i-th argument of !fa must be U a· The

dependency set Dfa is the union of the elements of dfa·

Let AG be an attribute grammar, and let G be its underlying context-free grammar.

An attributed parse tree APT of AG is a parse tree T of G together with a function p..

The function p. is the meaning of the tree. The domain of p. is the set

S = { (v, a) I vis a node ofT, and a E A{X)
where X is the symbol labeling v } .

For (v, a) E S, p.(v, a) E Ua. If (v, a) E S, then p.(v, a) is the value of a at v. An APT

is an evaluation of the parse tree T if an only if

1. Tis the underlying parse tree of the APT.

2. For each interior node v of T whose sole descendant is labeled with

>., let X be the symbol labeling v and let p = X- >.. For each

f7 E S(X), p.(v, u) must equal fg17(p.(v, a 1), ••. ,p.(v, am)), where m is

the arity of/&,, and d&, = ((0, at), ... ,(O, am)).

3. For each interior node v of T whose immediate descendants v11 ••• , lin

are labeled with symbols in V, let v0 = v, and let X 0 , ... ,Xn be the

symbols labeling v0 , ••• ,v" respectively. Let p = X 0 - X 1 ... Xn.

For each attribute u E S(X0), p.(v, a) must equal

/&,(p.(lli
1
, a1), ••• ,p.(vi,., am)), where m is the arity of fgcn and

d&, = ((i 1, a 1), .•. ,(im, am)). Similarly, for 1 < k < n and for each

inherited attribute L E I(Xk), p.(vk, L) must equal

/f,(p.(lli
1
, a 1), ••• ,p.(vi,., am)), where m is the arity of /f" and

df, = ((i 11 at), ... ,(im, am)).

In other words, an APT is an evaluation if and only if the values assigned to the

attributes are consistent with the values of the semantic functions for those attributes.

Let p = X 0 - X 1 .•. X". Let a be an attribute of x., where 1 < k < n. The

local closure Dfa of Dfa is the smallest set such that

1. Dfa C Dfa, and

2. if (i, a') E Dfa, then Dfa C Dfa.

An £-attributed grammar is an attribute grammar AG such that for every rule

p = X 0 - X 1 ... X" of the underlying context-free grammar of AG

1. if u, rr E S(X0), then if (0, rr) E Dg17 , (0, u) ~ Dkrr",

8

2. if" E J(X.~c), 1 < k < n, then for all (i, a) E l5't, i < k, and

3. if "E J(X.~c), 1 < k < n, then for all (k, a) E DktP, a E J(X.~c) and

(k, £) (/. Dfa ·

These restrictions ensure that it is possible to evaluate the attributes of any parse tree in

a single top-down left-to-right pass over that tree.

, ...

3

Previous Proposals for

Semantics-directed Error Recovery

The idea of using semantics to help detect and recover from syntactic errors is not new.

Many papers on syntactic error recovery suggest possible uses for semantic data. Most of

them, however, do little more than mention that those possibilities exist. Still, some

substantial work has been done in this area. At least two existing compilers use some

static semantic data to assist in error recovery.

Graham and Rhodes [GR75] were among the first to suggest that semantic

information could aid in syntactic error recovery. At the end of their paper, they

speculate on ways to improve their error recovery system. As an example of the possible

uses of semantics, they suggest that when the recovery algorithm inserts an identifier,

semantics might be used to decide which identifier should be inserted. That example

seems ill-chosen. While semantic information might preclude a particular identifier from

appearing in a given context, it rarely determines that a particular identifier must appear

in that context. Graham and Rhodes also outline a scheme for permitting semantic

analysis to continue after recovering from a syntax error.

Other papers on syntactic error recovery also mention possible uses for semantic

data. Pennella and DeRemer [PD77] consider ways of permitting semantic analysis to

continue following recoveries from syntax errors. Mickunas and Modry [MM78] come

closer to the ideas developed in this work. They suggest that semantic information might

be usefully employed in choosing a recovery. They do not, however, suggest how to do

so.

Milton, Kirchhoff, and Rowland [MKR79] made a serious attempt to include

semantics-directed error recovery as part of an attribute grammar based compiler

generator. Their compiler generator is unusual in that the parsers it produces can use

semantic information to help decide which parsing actions to ·perform. Their error

recovery algorithm is derived from the algorithm proposed by Fischer, Milton, and

Quiring [FMQ80]. The algorithm uses tables defined over symbols and attribute values.

They state that the implemented algorithm does not use semantics because the tables

would become too large. In saying so, they understate the problem. For any real

programming language, the set of attribute values will be infinite. Therefore, the tables

needed by the error recovery algorithm will also be infinite. Presumably, they would

avoid this problem by restricting the set of attribute values that index the tables to some

finite range.

In her dissertation [Sch82], Cosima Schmauch presents a more practical proposal for

semantics-directed error recovery. She too advocates using attribute grammars to define

the static semantics of programming languages. However, in her scheme, the semantic

checks associated with each rule are separated from the semantic functions that define

the attributes' values. Those semantic checks are called primitive predicates. She

proposes usmg the primitive predicates to guide the choice of recoveries. A recovery

from a syntax error will be favored if it does not cause a primitive predicate to be

9

10

violated. If every recovery causes a primitive predicate to be violated, the recovery that

permits the greatest number of reductions before such a violation occurs is chosen.

Because her algorithm was not implemented, it is hard to judge how well it might work.

Intuitively, it seems that her scheme should produce good recoveries, but that compilers

using it will be too slow to be practical.

The error recovery algorithm of Feyock and Lazarus [FL76] makes significant use of

semantic information. Their system assumes that the symbol table will be created in

tandem with parsing. A global variable is used as a semantic error flag. 'Whenever a

reduction is done according to a rule that contains an identifier or constant on the right

hand side, a check is made to determine if the semantics of that symbol are correct for

the given context. If a semantic error is detected, the semantic error flag is set to true.

For example, the semantic error flag is set to true if an undeclared identifier appears on

the left-hand side of an assignment. 'When testing a possible recovery, the error recovery

algorithm initially sets the semantic error flag to false. The test consists of modifying the

parse stack according to the potential recovery and then parsing the following input text.

Semantic checks are made during the test. The recovery is rejected if a syntactic error

was discovered during the test or if the semantic error flag was set to true.

Feyock and Lazarus used their system in a compiler for XPL (MHW70] called

EXPL. They found that EXPL spent between 2 to 3 seconds on average for each error

detected when running on an IBM 360/50. Although they state that that speed is

acceptable, it is at least a dozen times slower than other error recovery algorithms that

produce comparable results. Their use of semantics is not the major cause of the

algorithm's inefficiency; rather, it is the algorithm's syntactic component that causes it to

be slow. The cost of checking for semantic errors, though significant, is comparatively

small.

The paper by Feyock and Lazarus lacks detail. Many important questions about

their system can only be answered by inference from the examples given at the end of the

paper. Apparently, no semantic checks are made while parsing declarations, and no

semantic actions are performed while testing potential recoveries. Those restrictions

contribute to the efficiency and simplicity of their method but limit its power.

The sample results presented by Feyock and Lazarus are very good. However, the

examples appear to have been selected to show their system at its best. If their system

works as described in their paper, it cannot handle multiple errors. If a statement

contains two or more independent errors, all recoveries from those errors will be rejected.

Feyock and Lazarus did not give any examples of statements that contained multiple

errors in their paper. Also, they admit that if their error recovery algorithm finds more

than one viable recovery, it does not do a good job of selecting among them. However,

none of their examples illustrate this problem.

The Feyock and Lazarus scheme for applying semantics to error recovery suffers

from serious limitations. Their system apparently does not perform semantic actions

while testing potential recoveries. Therefore, if the semantic action associated with a

rule used in a reduction would normally alter the contents of the symbol table, the

symbol table will be left unchanged while testing a potential correction. That limitation

does not appear to be a problem for their XPL compiler. For other languages, however,

it could prove a serious deficiency. For example, in Pascal, if a syntax error were

detected in a with-statement and the semantics actions associated with that statement

were not executed while testing potential recoveries, good recoveries might be rejected

because of spurious semantic errors. Another limitation of their system is that it does

not perform general semantic checks while testing potential recoveries. The only checks

11

they do are to check that identifiers and constants appear in syntactic contexts where

they are semantically legal. That deficiency may prove a serious liability for languages

with complex semantics, such as Adaf [DoD83].

The error recovery algorithm by Graham, Haley, and Joy [GHJ79] is the best

known recovery algorithm that incorporates semantics. The Graham-Haley-Joy

algorithm is implemented as a part of the Berkeley Pascal compiler and interpreter. It is

similar to the Feyock-Lazarus algorithm in that whenever an identifier is encountered in

a context where a particular class of identifier is required, a check is made to see if the

identifier is of that class. The methods differ in their responses to errors detected by

those checks. Instead of setting a flag to signal that an error has been discovered, the

Graham-Haley-Joy system invokes the error handler. The error recovery algorithm first

assigns a tentative cost to changing the identifier's semantics to the desired semantics. A

test is then done to see if parsing can continue after that change. If a new error is found

during the test, the cost associated with changing the semantics is increased. After the

cost of the semantic change has been computed, a number of syntactic changes are also

tested. The potential recovery assigned the lowest cost is selected as the recovery to be

applied.

One reason for the difference between the ways Berkeley Pascal and EXPL treat

semantic errors is that Berkeley Pascal uses a less powerful but more efficient syntactic

error recovery scheme. The error recovery algorithm used by EXPL is able to back up

the state of the parse. Therefore, delaying detection of an error does not preclude

finding the best recovery. However, the execution time costs associated with providing

the ability to back up the parse are large. Partly for that reason, Berkeley Pascal does

not include the ability to back up the parse. Therefore, if it delayed detecting semantic

errors, it would sometimes be unable to find good recoveries. Consider the statement

a(i] := 0

where a is an array variable. The likely error is that a left parenthesis has been used

where a left square bracket was intended. When a is encountered, the semantic check is

made to see if a is the name of a procedure. The check fails, and so the error recovery

algorithm is invoked. Eventually, the error recovery system replaces the left parenthesis

with a left square bracket, and normal parsing resumes. Had the semantic check had not

triggered the error recovery algorithm, the parser would treat the text up to the right

square bracket as the start of a procedure statement. The error recovery algorithm

would by then be unable to find a good recovery.

Berkeley Pascal's error recovery algorithm does not always make good use of the

semantic information available to it. Consider, for example, the erroneous Pascal

statement

p[x + 1)

where p is declared to be a procedure of one parameter. The error is that a left square

bracket has been used where a left parenthesis was intended. The left square bracket

causes Berkeley Pascal to test if p is an array variable. Since it is not, the error recovery

algorithm is invoked. The error recovery algorithm decides that the best recovery is to

treat p as an array identifier. Then, when the parser reaches the right parenthesis, the

t Ada. is a. registered tra.dema.rk of the U. S. Government - Ada. Joint Project Office.

12

error recovery algorithm is reinvoked. This time, it is unable to find a good local

recovery. Therefore, it resorts to panic mode and eventually reports that a malformed

expression has been found. The poor choice of a recovery illustrated by this example

would have been avoided by increasing the cost of replacing an identifier with an

identifier of another class.

A major limitation of the schemes for applying semantics to syntactic error recovery

proposed by Feyock and Lazarus and by Graham, Haley, and Joy is that they cannot

take advantage of all of the semantic information that is available at compile time. The

only semantic data they use is information about identifiers obtained from the symbol

table and information about constants obtained from the lexical analyzer. Semantic data

generated during semantic analysis is unavailable to either system because they both

delay semantic analysis until after parsing has been completed.

4

Semantics-directed Error Recovery

This chapter considers ways of extending existing local recovery algorithms to take

advantage of semantic data. It begins with a survey of local recovery algorithms for LR

parsers. The survey is followed by a discussion of techniques for using semantic data to

enhance those algorithms. Finally, the question of how semantic data should be supplied

to the error recovery routines is examined.

4.1 Local Recovery Algorithms for LR Parsers

Some local recovery algorithms can only be used with specific classes of parsers. This

section surveys local recovery algorithms that can be used with LR parsers. LR parsing

and its related subclasses are probably the most widely used table-driven parsing

techniques. Therefore, local recovery algorithms that do not work for LR parsers are of

lesser interest.

A parser is a correct prefix parser if and only if for every input string

a 1 ... a~; a~;+1 ..• an such that a 1 ... a~; is a correct prefix but a 1 ... a~; a~;+1 is not, the parser

will not advance over a~;+1 before detecting an error. A class of parsers possesses the

correct prefix property if and only if every parser in that class is a correct prefix parser.

Every LR parser is a correct prefix parser.

Let x = a 1 ..• a~; a~;+1 ..• an. Suppose that a parser has detected an error after

advancing over a~; but before advancing over a~;+1 . Then the position in x between a~;

and a~;+1 is the error's detection point. An error's detection point need not be its true

location. Consider, for example, the code fragment

i := i + 1;
a [i - j + 1] = 0 then S;

The likely error here is that the keyword if has been omitted from the start of the

second line. However, a normal LR(1) parser will not detect an error until it has shifted

over the right bracket. Therefore, the error's detection point will be between the right

bracket and the equals sign.

Levy [Lev75] was among the first to propose a local recovery algorithm for LR

parsers. Levy's algorithm is related to the minimum distance repair algorithms [AP72,

Lyo74]. The only types of recoveries Levy considers are insertion and deletion of tokens.

There is an a priori bound N on the number of insertions and deletions permitted for a

single error.

Let x = a 1 ••. a~; a~;+1 ••• an be a terminal string. Suppose an error has been detected

in x and that its detection point is between a~; and ak+1. Levy's algorithm begins by

performing a backward move. The input text is examined to determine the leftmost

position i < k in x such that deleting ai or inserting a token immediately to the left of

ai could be part of a recovery. The parser's configuration is then backed up to the

13

14

configuration it had just after shifting over a;_1; if i =1, the parser is restored to its

initial configuration. Consider, for example, the program shown in Figure 4.1.

program max(input, output);
var x, y: real;

begin

end.

readln(x);
readln(y);
if x := y then

writeln(x)
else

writeln(y)

Figure 4.1 Example illustrating backtracking in Levy's algorithm

The error is that the token ':=' appears in the if-statement's predicate expression. It

seems likely that the programmer meant to write '>=' but made a typographical error.

Assume N = 1. Then the leftmost token in the program that could be involved in a

recovery is the keyword if. Therefore, the parser will be backed up to the configuration

it had just after shifting over the semicolon preceding the keyword if.

After completing the backward move, the algorithm performs a forward move.

Every modification of the input starting from position i that involves at most N

insertions or deletions is considered. The forward move consists of a parallel parse over

all of the modified strings. \Vhen the parse over one of the modified strings enters an

error configuration, that string is dropped from consideration. The forward move

continues until either all of the possible repairs are eliminated or all of the repairs still

under consideration enter equivalent configurations. In the first case, presumably, the

error recovery algorithm would next try panic mode. In the latter case, one of the

repairs found to be viable would be applied.

The local recovery algorithms next to be considered were all derived from the local

recovery algorithm for simple precedence parsers proposed by Graham and Rhodes

[GR75]. Like Levy, Graham and Rhodes use the terms forward move and backward

move to name actions of their algorithm. However, the actions named by those terms

are different for the two algorithms.

The Graham-Rhodes algorithm is divided into two phases: a condensation phase

followed by a correction phase. Suppose an error has been detected. During the

condensation phase, information is gathered from the context surrounding the error's

detection point. The first step of the condensation phase is the backward move. So long

as the top of the parse stack contains a handle, that handle is reduced. Because simple

precedence grammars are uniquely invertible, the nonterminal symbol to which the

handle is to be reduced is uniquely determined by the handle. Therefore, only one

sequence of reductions will be possible. The backward move is followed by the forward

move. The forward move parses the text following the error's detection point. The

forward move continues until either a second error is detected, or the only possible

parsing action is a reduction involving symbols to the left of the error's detection point.

The correction phase decides how to patch the error. The recoveries performed by

the Graham-Rhodes algorithm consist of replacing a portion of the parse stack by the rhs

of a rule. For each potential recovery, a check is made to ensure that parsing will be

15

able to continue if that recovery is applied. The cost of each recovery found to be viable

is then evaluated. Any recoveries whose costs exceed a predetermined threshold are

rejected. If the costs of any recoveries fall below the threshold, the recovery whose cost

is the lowest is applied.

The Graham-Rhodes algorithm cannot easily be adapted to work for LR parsers.

For LR parsers, it is neither feasible nor necessary to do a backward move. Because LR

grammars need not be uniquely invertible, there will usually be many different sequences

of reductions that could be done for a given configuration of the parse stack. However,

the purpose of a backward move is to gather information from the left context of an

error's detection point. For an LR parser, much of that information is built into the

parser's states. Therefore, doing a backward move would produce little information.

The forward move poses a more serious problem. LR parsers use an unbounded

amount of left context information to help decide which parsing actions to perform. It is

impossible to know what the left context of text following an error's detection point

should be. However, because a forward move never does a reduction involving symbols

to the left of an error's detection point, the left context of text following an error's

detection point can be regarded as simply a state of the parsing automaton. Therefore,

the number of contexts from which parsing may continue is bounded by the number of

states of the parsing automaton.

The local recovery algorithm proposed by Mickunas and Modry [MM78] is a

relatively straightforward adaptation of the Graham-Rhodes algorithm. Mickunas and

Modry solve the forward move problem by performing multiple forward moves. Let a be

the symbol immediately to the right of an error's detection point. The condensation

phase of the Mickunas-Modry algorithm starts by identifying the set 'It of states that

permit shifts over a. For each state q in 'It, the algorithm parses the text to the right of

the detection point starting from state q. Each parse continues until either a second

error is detected or the next parsing action is a reduction involving symbols to the left of

the detection point. The sequence of states that is the result of a forward move is called

a recovery candidate. Recovery candidates that are the results of parses that ended

because the next action would be a reduction across the error's detection point are

correction candidates. Recovery candidates that are the results of parses that ended

because of later errors are holding candidates. Both the correction candidates and the

holding candidates are sorted according to the number of tokens shifted before their trial

parses halted.

The correction phase of the Mickunas-Modry algorithm is quite different from that

of the Graham-Rhodes algorithm. The Mickunas-Modry algorithm attempts to find the

recovery candidate that best matches the parse stack. It invokes a correction algorithm

that tests various repairs for each correction candidate in order, starting with the

candidate that shifted over the most tokens. The correction algorithm returns either a

possible repair along with a cost for applying that repair, or an indication that no repair

was found. If any suitable repairs were found, the lowest cost repair is applied, and

normal parsing resumes. If none of the correction candidates yielded a repair, the error

recovery algorithm is recursively reinvoked for each holding candidate in an attempt to

repair the error that caused the forward move to terminate. The correction algorithm is

then invoked for each holding candidate whose forward move was repaired. If any of the

holding candidates can be repaired, the best repair is applied, and normal parsing

resumes. If none of the recovery candidates leads to a repair, the recovery algorithm

fails.

16

The correction algorithm used by Mickunas and Madry takes two arguments: a

parse stack and a recovery candidate. The algorithm attempts to find the lowest cost

repair that bridges the gap between its arguments. The only repairs considered are

insertions and deletions of single tokens. The algorithm tries insertions first. If there are

any tokens such that inserting one of them between the parse stack and the recovery

candidate permits parsing to continue, the least costly of those insertions is returned. If

no such insertion is found, attempts are made to repair the error further down in the

parse stack. Let a be the accessing symbol of the state at the top of the parse stack. Let

'If = { q I g(q, a)= p}, where g is the parser's goto function, and p is the state at the

start of the current recovery candidate. For each q E 'If, the correction algorithm is

recursively reinvoked. The parse stack passed to the new invocation is the current parse

stack minus its topmost element. The recovery candidate is the sequence of states

formed by prepending q to the current recovery candidate. If any viable repairs are

found, the lowest cost repair is returned as the result of the correction algorithm.

Otherwise, deletions are attempted. Again, let a be the accessing symbol of the state at

the top of the parse stack. If a is a terminal symbol, the stack is popped, and the

correction algorithm is recursively reinvoked. If a is a nonterminal symbol, the parse

stack is popped and then the string from which a was produced is reparsed ignoring the

last token. The correction algorithm is then reinvoked. If deletion fails to produce a

repair, the correction algorithm fails.

The fundamental problem of the Mickunas-Modry algorithm is its inefficiency.

Performing multiple forward moves is a major source of inefficiency. Study of the

Mickunas-Modry algorithm when applied to the Ripley-Druseikis test suite [RD78]

revealed that few forward moves continued for more than a few symbols. The number of

forward moves that were done, however, was surprisingly large. Consider the statement
. .

quo := s over;;

The likely error is that the identifier over was mistakenly used in place of the keyword

div. The parser detects the error between the identifiers i and over. The condensation

phase carries out forward moves starting with the identifier over for every state of the

parsing automaton that permits a shift over an identifier. There are 102 such states (out

of a total of 394 states) in the LALR(1) parser for Pascal used in this study. Because the

next symbol is another identifier (j), every forward move immediately fails. Thus, every

forward move becomes a holding candidate. For each of those forward moves, the error

recovery algorithm is recursively invoked. Hence, for each of the original forward moves,

another 102 forward moves are commenced. Most of those 10404 secondary forward

moves produce correction candidates. Thus, after a few thousand applications of the

correction algorithm, a repair will be produced. To be fair, it it must be admitted that

this is an extreme case. Nonetheless, even for more common examples, the number of

forward moves considered can be very large.

Another solution to the forward move problem was proposed by Druseikis and

Ripley [DR76] and independently by Pennella and DeRemer [PD78]. They create an

extended parsing automaton that achieves the effects of multiple forward moves by

performing a single forward move. The basis of their methods is that all of the forward

parses can be carried out simultaneously provided they all perform the same reductions

at the same points in the parse. The Druseikis-Ripley algorithm and the Pennella

DeRemer algorithm differ in matters of detail only; the formulation below is based on the

Pennella-DeRemer algorithm.

Let M be an LR(k) parsing automaton. Let q 1 and q2 be any two states of M, and

let x be any lookahead string. Let o 1 = f(q 1, x) and let o2 = f(q 2, x), where f is the

17

action function of M. Then q1 and q2 are a-equivalent over x if and only if a 1 =error,

or a 2 =error, or a 1 = a 2•

The Pennella-DeRemer algorithm uses a forward move automaton (FMA) to carry

out its condensation phase. For each LR(k) parsing automaton M, there is a unique

FMA. The FMA is another LR(k) parsing automaton. The state set of the FMA is the

power set of Q, where Q is the state set of M. The set Q is the initial state of the FMA.

The goto function 6 of the FMA is derived from the goto function g of M. For each state

s of the FMA and for each symbol a, 8(s, a)= { q I for some p E Q, g(p, a)= q}.

Similarly, the action function ¢> of the FMA is derived from the action function f of M.

A state 8 of the FMA is consistent over a lookahead string x if and only if for all p,

q E s, p and q are a-equivalent over x. For eaeh state s of the FMA and each lookahead

string x, ¢>(s, x) = error if s is not consistent over x. The error action does not signify

that a error has been detected; it is, rather, a signal that the FMA should cease parsing.

Suppose 8 is consistent over x. If f(q, x) = error for all states q E s, then

¢>(s, x) =error. Otherwise, there must be a single action a such that f(q, x) =a for

some q E 8. In that case, ¢>(s, x) = a. Although it may at first appear that the FMA

would be too large to be practical, it should be noted that most of the states of the FMA

are inaccessible. Also, many of the states of the original parsing automaton can be

shared by the FMA. Pennella and DeRemer report that the number of extra states

needed for the FMA is about 20-50% of the number of states in the original parsing

automaton.

The Pennella-DeRemer algorithm assumes that the FMA is precomputed. When an

error is detected, the condensation phase of the Pennella-DeRemer error recovery

algorithm uses the FMA to parse the text following the error's detection point. The

parse continues until either the FMA detects an error or an attempt is made to reduce

across the point in the input string at which parsing using the FMA commenced. The

result of the parse is the sequence of terminal and nonterminal symbols produced by the

shifts and reductions performed by the FMA. Given that the FMA is an LR(k) parsing

automaton, the time required for the forward move should be roughly equivalent to the

time required for normal parsing. The only extra operations that need to be done are the

checks to see if a reduction crosses the error's detection point.

The condensation phase of the Pennella-DeRemer error recovery algorithm does not

produce as much information as that of the Mickunas-Modry algorithm. The

condensation phase of the Mickunas-Modry algorithm produces the set of sequences of

states resulting from every parse that could possibly follow the detection point. The

forward move performed by the FMA of the Pennella-DeRemer algorithm, on the other

hand, produces only the sequence of terminal and nonterminal symbols that would be the

common result of all parses starting from the detection point that do not lead to error

configurations. As a result, the correction phase of the Pennella-DeRemer algorithm has

less information available to it when selecting a repair. The correction phase, therefore,

must test each possible repair it considers in ways that would be unnecessary for the

Mickunas-Modry algorithm. Because each recovery candidate considered by the

Mickunas-Modry algorithm is the result of parsing the string following the detection

point starting from a given state, the correction phase need only check that a repair will

cause the context to the left of the detection point to allow a transition into that state.

The Pennella-DeRemer algorithm, on the other hand, must check that any possible repair

will allow the parse to continue over the sequence of sym bois produced by the FMA.

Before trying to repair any errors in a program, the entire program following the

first error detected is parsed by the FMA. If the FMA halts before reaching the

program's end, it begins parsing again starting from the symbol following the last symbol

18

it was able to shift. The correction phase of the algorithm then tries to find corrections

that will transform the sequence of strings produced by the FMA into a sentential form.

The correction phase tries three types of repair: insertion, deletion, and replacement of

single tokens. The repairs are first applied at the point at the detection point of the first

error. A repair succeeds if it permits the parser to shift over a predefined number of

symbols. If none of the repairs tried at the detection point succeeds, the algorithm tries

applying the repairs to the symbols to the left of the detection point in right to left

succession until either a repair is found or the algorithm reaches the leftmost end of the

string. After repairing the first error, the algorithm then continues parsing until it either

accepts the input, or detects a subsequent error. If another error is detected, the

correction phase is again applied .. Note that there,is no need to invoke the condensation

phase again since the entire string has already been parsed by the FMA.

The most recent error recovery algorithm for LR parsers was first proposed and

implemented by Feyock and Lazarus [FL76J. Graham, Haley, and Joy [GHJ79]

independently developed a more refined and more practical version of the algorithm.

Burke and Fisher [BF82J subsequently made further extensions to it. Although this

algorithm was first reported by Feyock and Lazarus, it has, perhaps unfairly, come to be

known as the Graham-Haley-Joy algorithm.

The Graham-Haley-Joy algorithm might best be described as a "shotgun" method.

For each error detected, several recoveries are considered. The lowest cost recovery that

allows parsing to continue is selected as the one to be applied. The algorithm possesses a

fixed repertoire of repairs such as insertions, deletions, and replacements. Whenever an

error is detected, the potential repairs are considered one at a time. Copies are made of

the parse stack and a segment of the remaining input. Those copies are modified to

reflect the repair being tested, and then they are parsed. The modified segment of the

remaining input is called the test string, and the parse is called a forward move. (Note

that "forward move" here means something different from either of the two previous uses

of the same term.) The parse is halted when a new error is detected, the input string is

accepted, or the parser shifts over the entire test string. Each repair is assigned a cost

based on the nature of the repair. In addition, if the parse of the test string ends with an

error, the cost of the repair is increased. If any suitable repairs are found for the given

error, the lowest cost repair is applied and normal parsing resumes. Otherwise, the

recovery algorithm resorts to panic mode.

A straightforward implementation of the Graham-Haley-Joy algorithm may do a

great deal of redundant parsing. For example, consider the code fragment
. . .
I := I);

if x < 0 then S;

The error here is the pair of adjacent identifiers on the first line. Many of the possible

repairs will permit parsing to continue through the if-statement on the second line.

Hence, unless the test strings are made unreasonably short, at least a portion of the if

statement will be parsed repeatedly as potential repairs are tested. However, there is

exactly one state that contains a shift over the token if in the LALR(1) parser for Pascal

used in this work. Therefore, for that parser, every parse of the if-statement will yield

exactly the same result.

A way of implementing the Graham-Haley-Joy algorithm that avoids most

redundant parsing has been developed as a part of this work. Let a 1 ... am and b 1 ... bn be

two strings such that ai ... am = b j ... bn. Suppose that the state of the parser just before

shifting over ai is the same as its state just before shifting over bi. Let k be the height of

....

19

the parse stack just before the parser shifts over ai. Then the actions of the parser after

shifting over ai will be identical to its actions after shifting over b i until it performs a

reduction that reduces the height of the parse stack (before pushing the new state onto

the stack) to less than k. That last reduction is the freeing reduction of the initial shift.

The net result of the parsing actions performed from the time the parser shifts over a

given token until it performs the freeing reduction associated with that shift consists of

popping some states off the parse stack, advancing over some input tokens, and then

shifting over a nonterminal symbol. These facts can be exploited to avoid redundant

parsing while testing potential repairs.

The new technique for implementing the Graham-Haley-Joy algorithm relies on

information recorded during earlier forward moves to avoid redundant parsing during the

current forward move. Whenever a forward move is about to shift over a token of its

test string that is to the right of any changes made to the original string, a check is made

to see if any previous forward moves shifted over that token starting from the same

state. If so, a record will have been kept of the net result of the shift and all subsequent

actions up to and including the associated freeing reduction (if one was performed).

Therefore, that result can be implemented directly without having to reparse any portion

of the input. Three forms of results may have been recorded, namely that the parser

1. shifts over the remaining characters of the test string,

2. detects an error k tokens later, or

3. pops k states off the parse stack, advances over n tokens of the test

string, and shifts over the nonterminal symbol A.

In either of the first two cases, the forward move is terminated. In the last case, the

stack and the remaining input are modified as indicated and then the forward move is

resumed. Consider the previous example again. The first forward move that shifts over

the token if will record that the net effect of the shift and the subsequent actions is to

pop one symbol off the parse stack, advance the input 6 tokens, and shift over the

nonterminal symbol "unlabeled statement." (Note that the recorded result depends on

the particular parser being used; for other parsers, other results would be recorded.) All

subsequent forward moves that would otherwise have to reparse the if-statement can now

simply implement the recorded result (recall that there is only one state that contains a

shift over the token if).

The information needed about the results of particular groups of parsing actions can

be gathered without significantly slowing the parser. Whenever the parser shifts over a

token in a test string that is to the right of all changes made to the string, an ordered

triple is pushed onto an auxiliary stack. The form of the triple is (q, l, h), where q is the

state of the parser just before shifting, l is the location of the token in the original input

string, and h is the height of the parse stack after shifting. Whenever the parser

performs a reduction that pops more than two states off the parse stack, the contents of

the auxiliary stack are examined starting from the top of the stack. Let k be the height

of the parse stack after the symbols have been removed, let n be the location of the

current lookahead symbol in the original input string, and let A be the nonterminal

symbol on the lhs of the rule used in the reduction. For each element (q, l, h) of the

auxiliary stack such that h < k, record that whenever the parser shifts over the symbol

at location l starting from the state q, the net result is to pop k - h states off the parse

stack, advance the parse n - l tokens, and shift over A. Each such element is then

popped off the auxiliary stack. Whenever the parser detects an error or shifts over the

final token in the test string, the corresponding results are recorded for every element

20

that remains on the auxiliary stack, and then the stack is emptied.

4.2 Applying Semantics to Repairs

The main reason for applying semantic data to error recovery is to produce better error

diagnoses. Given a set of potential recoveries, those recoveries that lead to semantically

correct programs should normally be preferred over those that do not. Every error

repair algorithm must have a method for choosing among possible repairs. That selection

mechanism is the obvious point at which to apply semantic data.

Levy's algorithm uses two different mechanisms for choosing a repair. The forward

move phase of the algorithm rejects all repairs that involve more than a predefined

number of changes to the input. After the forward move phase, some other mechanism

is needed to choose among the remaining repairs. There seems little point in applying

semantics to the forward move phase. The cost of performing semantic analysis during

the myriad possible forward moves is too great, and the benefits of doing so are too

small. Any repairs that would be weeded out because of semantic information can also

be rejected later. Semantic checking could be applied just after the forward move phase.

If any of the repaired strings are found to be semantically correct, those repairs that do

not produce semantically correct strings can be rejected. The syntactic costs of the

repairs could then be used to select a repair from among the remaining possibilities. If

none of the repaired strings are semantically correct, the choice of a repair could be

based on a function of the semantic and syntactic costs of each potential repair.

Levy's algorithm is thus easily extended to use semantic data. However, minimal

distance repair algorithms such as Levy's are inherently slow. The order complexity of

those algorithms is equivalent to the order complexity of general context-free parsing. In

his paper, Levy suggests some heuristic limits which can be imposed to reduce the order

complexity of his algorithm. If those limits are applied, the order complexity becomes

linear. Even with those restrictions, however, the algorithm is too slow to be considered

practical.

The local recovery algorithms for LR parsers that were based on the Graham

Rhodes algorithm cannot easily be adapted to take advantage of semantic data.

Semantic analysis cannot be done during the forward move because semantic actions that

might critically affect the analysis may not have been executed. Furthermore, it cannot

be done after the forward move, because the text following the detection point will

already have been parsed. One way around this dilemma is to save copies of the tokens

in the text parsed by the forward move. Semantics could then be applied to the selection

of each repair. When selecting a repair, the text to the right of the detection point of

that error could be reparsed and the semantic cost associated with the repair could be

determined. After the repair is selected, the repaired text could be parsed so that

semantic analysis could continue up to the next error.

The difficulty of adding semantics to the Graham-Haley-Joy algorithm depends on

the way in which the forward move was implemented. If the forward move consists of

parsing each test string independently, it is easy to extend the algorithm to make use of

semantics. During each forward move, the semantic actions and checks associated with

each reduction performed can be executed. The semantic cost thus determined can then

be used to in computing the cost of the repair. This is the technique used in the Pascal

auditor created as a part of this work.

21

An implementation of the forward move that avoids redundant parsing makes it

harder to compute the cost of a repair. However, it may reduce the time spent

computing those costs. If any redundant parsing is to be avoided, it is necessary to know

which semantic actions can alter the contents of the symbol table or other global

semantic entities. If the text parsed during a forward move executes any of those

actions, the mechanism for avoiding redundant parsing should cease to be used for the

rest of the forward move. The results of a parse should not be recorded if any of such

action was performed during the parse. Whenever a result of a parse is recorded, the

semantic cost associated with that result should also be recorded. Whenever a reduction

to a nonterminal symbol is recorded, the semantic value computed for that symbol

should also be recorded. Thus, in those contexts that are not semantically sensitive, both

redundant parsing and redundant semantic analysis can be avoided.

The Graham-Haley-Joy algorithm is thus shown to be the most suitable basis for

semantics-directed repairs. Levy's algorithm and the Mickunas-Modry algorithm are too

slow to serve as a basis for a practical error repair algorithm. The Pennella-DeRemer

and Druseikis-Ripley algorithms are both fast enough to be used for syntactic error

recovery, but are not easily modified to take advantage of semantic data. The Graham

Haley-Joy algorithm is both fast enough to be practical and can easily be modified to

make use of semantic data.

4.3 Semantics for Semantics-directed Repairs.

The analysis phase of a modern compiler consists mainly of performing a syntax-directed

translation. The result of analyzing an input program is the same program expressed in

another form. That form might be anything from a parse tree to absolute machine code.

The transformation is effected by action routines associated with the syntactic constructs

of the language. If the compiler's parser is produced from a grammar, each action

routine is associated with a rule of the grammar. This section examines the

characteristics the action routines must possess to support semantics-directed error

recovery. The ways those routines are implemented is not discussed here; that topic is

deferred until Chapter 5.

The action routines can affect error recovery in two ways. If an action routine finds

a semantic error that may be the result of a syntactic error, it can signal that the

syntactic repair algorithm should be invoked. It can also provide information to the

error repair algorithm about the semantic costs of potential repairs.

Culik [Cul69] and Koster [Kos71] each proposed separating the checks for semantic

errors from the rest of the action routines. Thus, each action routine is split into two

parts: a semantic check and a semantic action. The semantic checks are predicates based

on the attributes of the symbols named in the associated rules. During semantic analysis,

the semantic check is evaluated before executing the corresponding semantic action. The

check returns false if a semantic error is detected. As was noted in Chapter 3, Schmauch

[Sch82] uses this scheme as a basis for semantics-directed repairs. Whenever a repair is

evaluated, it is assigned a cost based on the number of tokens shifted before a semantic

error is detected. Schmauch's algorithm makes no provision for ·invoking the syntactic

error recovery algorithm in the event of a semantic error. The syntactic recovery

algorithm could simply be invoked whenever a semantic error is detected. However, for

many types of semantic errors there is no reason to suspect that the error is the result of

a syntactic mistake. For example, it would be wasteful to invoke the syntactic repair

algorithm whenever a semantic check detects an undeclared identifier, since there is little

22

hope that such an error could be corrected by a syntactic repair.

The scheme used in this work for providing semantic data to the parser and the

error recovery algorithm is based on an extended notion of semantic checks. Those

extended semantic checks are called guards. Each semantic action can be preceded by a

guard. A guard sets two global variables: a flag indicating whether the syntactic repair

algorithm should be invoked, and a integer indicating the cost of performing the

associated semantic action. The compiler writer decides which semantic errors will cause

the flag to be set. Thus, errors such as undeclared identifiers need not cause the

syntactic repair algorithm to be invoked. A guard must set the cost to zero if no

semantic error is found; otherwise, it must be assigned a positive value.

The semantic actions must be able to cope with semantic errors. Error messages for

semantic errors are issued by the semantic actions. A semantic action will be invoked

even if the preceding guard signals that there is a semantic error. The syntactic repair

algorithm executes the semantic actions while testing potential repairs (after setting a

flag that blocks error reporting). If no syntactic repair that fixes the semantic error is

found, the semantic action is invoked to issue an error message and generate an

appropriate result.

It is sometimes possible to produce the correct semantic result in the presence of

semantic errors. For example, the type of a relational expression is Boolean regardless of

the types of its operands. Therefore, the semantic action for a relational expression can

return a value indicating that the expression's type is Boolean even if the types of the

expression's operands clash. This particular example has led to obviously better repairs

in some instances. It is, of course, usually impossible to produce correct semantic results

in the presence of semantic errors. In those situations, the semantic action should return

a special error value as its result. The error value could be propagated by later rules to

prevent detection of spurious errors.

The scheme outlined above was used in the Pascal auditor. That experience has

shown that the scheme could be used as a basis for semantics-directed error recovery for

a real programming language. However, it also exposed a basic flaw of the scheme,

namely that the time required to analyze correct programs is significantly increased over

the time required by conventional compilers.

One cause of that increase is that the guards and semantic actions must often check

the same conditions. There is no communication between the guards and the semantic

actions. The guards check for semantic errors and decide how they should be handled.

However, it is the semantic actions that must produce the error messages. To know

whether a message should be issued, the semantic action must usually perform the same

checks as the guard. Programming languages with many data types and strong type

checking require elaborate tests for semantic correctness. Examination of the run-time

actions of the Pascal auditor has shown that those checks usually had to be performed

twice. While the execution time of each semantic check is small, the time spent

performing the redundant checks is a significant fraction of the total time required to

analyze correct programs.

Another source of the implementation's inefficiency is that a single copy of the

guards and actions is used by both the parser and the error recovery algorithm.

Therefore, evaluating a guard or executing an action always involves a subroutine call.

The Y ace parser generator [Joh78] is able to avoid this overhead by expanding the action

routines inline within the parser itself. The overhead could have been avoided in the

implementation by expanding the guards and actions inline within both the parser and

the error recovery algorithm. The only objection to that expansion is the additional code

Ill.

I

23

space required. The total size of the guard and action routines is just under 11,000

bytes. Making duplicate copies of those routines would be undesirable for a small

machine, but it would be acceptable for most paging machines (particularly since the

copy created for the error recovery algorithm will not have to be loaded into memory

unless an error is detected).

The semantic routines can be organized so that no redundant checks are performed

for correct programs. In the previous scheme, the guards always produced both a flag

value and a cost. The flag value serves only to trigger the repair algorithm; while the

repair algorithm is executing, the flag value is not inspected. The cost, on the other

hand, is never examined during normal parsing. Thus, the flag value and the cost are

never needed at the same time. This observation suggests that it would be better to split

the action routines into separate versions for normal parsing and for error recovery than

to split them into semantic checks and semantic guards.

The new scheme requires three versions of each action routine. The first version is

used during normal parsing, the second is used to test potential repairs, and the third is

used to get semantic analysis back on track after recovering from an error. The versions

of an action routine are similar except for the way in which they treat semantic errors.

When the first version detects an error, it either sets the flag that signals that the

syntactic repair algorithm should be invoked and returns, or it issues an error message

and continues executing. When the second version detects an error, it assigns a cost to

that error and continues; it never issues an error message. When the third version

detects an error, it issues an error message and continues executing; it does not affect

either the flag or the cost.

Since the new scheme requires different versions of each action routine for each

function that those routines serve, each occurrence of an action routine should be

expanded inline. The objections to inline expansion of the action routines under the

previous scheme are exacerbated under the new scheme, since now three copies of each

routine are needed. There are, however, reasons to believe that the space requirements

will not increase as much as might at first be expected. Under the previous scheme, the

codes for the guards were usually similar to the codes for the semantic actions but

different enough that they could not be shared. Under the new scheme, the codes for the

various versions of the action routines will usually be identical except for the portions for

handling errors. Thus, there should be more chances for sharing code.

5

A Model of Compilation for
Semantics-directed Error Recovery

Semantics-directed error recovery requires unusually tight linkage between parsing and

semantic analysis. Many compilers defer semantic analysis until after parsing has been

completed. Even one-pass compilers commonly delay semantic checking for each

statement until after the entire statement has been parsed. Delaying semantic checking

can result in inferior recoveries. Consider, for example, the statement

writeln(x. y)

where x and y are real variables. The apparent error is that a period has been used

where a comma was intended. The semantic routines could detect this error before the

parser shifts over the period. If that happens, a semantics-directed error recovery

algorithm would most likely replace the period with a comma. However, the statement is

syntactically correct since z. y is a well-formed record selection. Therefore, if semantic

checking is deferred, the error will not be discovered until after the statement has been

parsed. By that time, only a backtracking error recovery algorithm could find the best

recovery. The backtracking error recovery algorithms that have been proposed thus far

are too slow to be practical. Therefore, it must be assumed that deferring semantic

checking would lead to inferior recoveries.

Semantics-directed error recovery also requires the ability to undo the effects of

semantic operations. When testing a potential recovery, the error recovery algorithm

must evaluate the semantics associated with that recovery to determine its semantic cost.

If the recovery is rejected, the semantic operations done while testing it must not affect

later stages of compilation. Semantic operations performed by conventional compilers

are not easily reversed. The effects of a executing a semantic action can include altering

global variables, updating attributes in the semantic stack, and inserting and deleting

symbol table entries. Since semantic operations can cause so many kinds of changes, a

general history mechanism would be needed to make it possible to reverse their effects.

While such a mechanism could be implemented, the associated time and space overheads

are daunting. Therefore, a more restricted compiler organization is needed.

This chapter explores some ways of organizing a compiler to support semantics

directed error recovery. First, a paradigm of reversible semantics based on attribute

grammars is given. Restricted forms of attribute grammars that could support

semantics-directed error recovery are considered. The chapter concludes with the

presentation of a model of compilation that can support semantics-directed error

recovery and yet is efficient enough to be used as a basis for practical compilers.

24

25

5.1 Attribute Grammars

Attribute grammars are currently the most popular model of the analysis phase of

compilation. Analyzing a program according to an attribute grammar consists of

generating an evaluation for it. Producing an evaluation involves two distinct steps.

First, the program's parse tree must be constructed. Then, the attributes of the parse

tree's nodes are evaluated. Every attribute of every node in the parse tree is initially

considered to be unknown. For each attribute of a node, the associated dependency

vector determines which other attributes must be assigned values before it can be

evaluated. So long as any attributes have not been assigned a value, an attribute that

can be evaluated is found, the associated semantic function is evaluated, and the

resulting value is assigned to the attribute. This process continues until either every

attribute has been assigned a value, or no further attributes can be evaluated because of

circular dependencies.

The attribute grammars used by compiler generation systems usually permit

terminal symbols to possess "inherent attributes." The values of the inherent attributes

are set by the lexical analyzer. For example, the inherent attribute of an identifier might

be the string representing that identifier, while the inherent attribute of an integer

constant might be its value. Inherent attributes are theoretically unnecessary. The

inherent attributes of a symbol could be replaced by synthesized attributes if the

underlying grammar for the language were extended down to the character level. The

additional time required to parse according to such a grammar renders that possibility

impractical.

Attribute grammars represent a more restrictive model of compilation than is

embodied by most compilers. The only semantic operation is to evaluate attributes.

Further, once an attribute has been assigned a value, its value cannot be changed.

Finally, there are no global data structures. Those restrictions make it easy to reverse

the effects of semantic operations.

One concrete implementation of reversible semantic analysis for attribute grammars

involves pairing each attribute with a pointer variable. Attribute evaluation requires a

means of indicating which attributes have already been assigned values. In this

implementation, the pointer variables indicate whether the associated attributes have

been evaluated. Initially, the pointer variables are all set to null. Any attribute whose

associated pointer variable is null is considered to be unevaluated. When an attribute is

assigned a value, its pointer variable is set to the address of the pointer variable paired

with the last attribute that was previously assigned a value. A special flag value must be

assigned to the pointer variable associated with the first attribute to be evaluated. Thus,

the pointers paired with evaluated attributes form a singly linked list ordered in the

reverse of the order of evaluation. The effects of all semantic operations done after a

given time can be undone simply by following the chain of pointer variables back to last

one that had been set at that time, resetting each pointer variable encountered along the

way to null.

5.2 LL- and LR-attributed Grammars

Although general attribute grammars allow the effects of semantic operations to be

reversed, they do not provide a suitable basis for semantics-directed error recovery. For

general attribute grammars, the entire parse tree of a program must be constructed

before any of that tree's attributes can be evaluated. Therefore, no semantic checking

26

can be done before parsing is completed. Thus, it is impossible to use semantic

information to recover from syntax errorso Some forms of attribute grammars that do

permit semantic analysis to be linked with parsing have been proposed. Two of the most

powerful forms, the LL-attributed grammars [LRS7 4] and the LR-attributed grammars

[Wat77], are considered in this section.

For attribute grammars, performing semantic analysis while parsing means that

whenever the parser advances over an input token, all of that token's attributes must be

evaluated. Also, whenever the parser reaches the end of the rhs of a rule in the

derivation produced by the parser, the attributes of the symbol on the lhs of that rule

must be evaluated. Evaluating synthesized attributes while parsing poses no problem.

By the time the parser reaches the end of the rhs of a rule X 0 - X 1 ••• Xn that is in the

derivation produced by the parser, the attributes of the symbols on the rhs of the rule

must all have been evaluated. Therefore, any synthesized attributes of the symbol on the

lhs of the rule can be evaluated. Thus, only inherited attributes require special handling.

Lewis, Rosenkrantz, and Stearns [LRS7 4] show that for an L-attributed grammar

the attributes of a parse tree can be evaluated in a single left-to-right top-down traversal

of the tree. Since such a traversal corresponds to the order in which the nodes are

encountered during a left-to-right top-down parse, an L-attributed grammar permits

semantic analysis while parsing if the underlying grammar is LL(k). An L-attributed

grammar whose underlying context-free grammar is LL(k) for some k is an LL-attributed

grammaro An automaton for evaluating LL-attributed grammars while parsing is

described in [LRS74].

Methods for implementing semantic evaluation while parsing for use with bottom-up

parsers have also been proposed [LRS74, Wat77, Poh83]. The method described here is

based on the method proposed by Watt [Wat77]. Watt's method is defined, not for

attribute grammars, but for a related class of grammars called affix grammars [Kos71].

The variant described below is an adaptation of Watt's method for L-attributed

grammars. Given an L-attributed grammar AG, a total order is defined over the

inherited attributes of each symbol. The values of the currently relevant inherited

attributes are maintained in a global stack called the inherited attribute stack.

Whenever a rule X 0 - X 1 ... Xn is used in a reduction, the values of the inherited

attributes of X 0 will appear in order at the top of the inherited attribute stack. Let G

be the underlying context-free grammar of AG. A new grammar, called the head

grammar, is created from G. The head grammar contains new symbols and rules that

are used to manipulate the inherited attribute stack. A control rule is a >.-rule whose

associated action routine modifies the inherited attribute stack. The nonterminal symbol

on the lhs of a control rule is a control symbol. The control symbols must be symbols

that do not appear in the vocabulary of G. Control symbols are used to evaluate

inherited attributes and to maintain those values in the proper order on the inherited

attribute stack. Let X 0 - X 1 .•• Xn be a rule of G. The corresponding rule of the head

grammar is created by adding control symbols to the immediate left and right of those

symbols that require modification of the inherited attribute stack. For each X 1"

1 < k < n, the semantic functions and dependency vectors used to compute the values

of the inherited attributes of X~e are examined. If the compiler generator can determine

that the values of the inherited attributes of X~e must equal the values already at the top

of the inherited attribute stack, no control productions are added around X~e.

Otherwise, X~e is surrounded by a pair of control symbols. The action routine associated

with the control symbol to the left of X~e pushes the values of those inherited attributes

onto the inherited attribute stack. The action routine associated with the control symbol

to the right of the symbol pops those values off the stack. Note that different orderings

27

of the inherited attributes may result in different head grammars.

An L-attributed grammar whose head grammar is LR(k) for some ordering of the

inherited attributes is an LR{k)-attributed grammar. An L-attributed grammar that is

an LR(k)-attributed grammar for some k is an LR-attributed grammar. It is difficult

characterize the LR(k)-attributed grammars. If the underlying context-free grammar G

of an attribute grammar is not LR(k), then its head grammar will not be LR(k).

However, the control symbols and control productions that are added to the head

grammar may cause it to fail to be LR(k) even when G is LR(k). Also, the quality of the

algorithm used to produce the head grammar affects which L-attributed grammars are

LR(k)-attributed grammars. For example, a variety of tests could be used to determine

whether the inherited attribute stack must be modified. A compiler generator that uses

a powerful test will produce LR(k) head grammars more often than one that uses a

weaker test.

Attribute grammars for programming languages normally use inherited attributes to

move information about the environment in which symbols occur down to the instances

of those symbols in the parse tree. Thus, for most parts of the context-free grammar of

a programming language, the head grammar will be the same as the original grammar.

Consider, for example, the piece of an attribute grammar for expressions shown in

Figure 5.1. The inherited attribute ENV is an environment, the synthesized attribute

DEF is a definition, and the inherent attribute TAG is a string. An environment is

assumed to be a list of definitions for symbols. The function lookup takes a string and

an environment as its arguments. If the string is associated with a definition, that

definition is returned; otherwise, an error value is returned. 'Whenever a reduction is

performed according to one of the rules given above, the topmost value on the inherited

attribute stack will be the current environment value. A compiler generator should be

able to determine that the stack need not be modified for any of the rules listed, since

the semantic functions assigning values to the ENV attribute are all copy operations.

Therefore, those rules should be copied into the head grammar without change.

Both LL- and LR-attributed grammars are well suited for semantics-directed error

recovery. Because the attributes are evaluated in a single pass, there is no need to store

the parse tree. For LL-attributed grammars, the attribute values can be maintained in a

separate semantic stack. Whenever the error recovery routine is entered, a copy can be

made of the contents of the semantic stack. The effects of semantic operations done

while testing a potential recovery can be undone by copying back the original contents of

the semantic stack. For LR-attributed grammars, the values of the inherited attributes

of symbols that have not yet been shifted are stored in the inherited attribute stack.

The synthesized and inherited attributes of the symbols that have been shifted can be

stored in a separate semantic stack. The semantic stack for LR-attributed grammars

would be maintained in parallel with the parse stack. As in the case of LL-attributed

grammars, the values of the inherited attribute stack and the semantic stack could be

copied and then restored as needed.

Unlike general attribute grammars, LL- and LR-attributed grammars make

semantic information available when needed to evaluate the semantic costs of potential

recoveries provided that the language being analyzed requires symbols to be declared

before they are used. Languages with that property are called one-pass languages. Few

languages are strictly one-pass languages. However, many languages, including Fortran

[ANS78], Cobol [ANS74], Pascal [ANS83], and C [KR78], are nearly one-pass languages,

i.e., they are one-pass except with respect to a few constructs such as labels. Semantics

directed error recovery for those semantic features of a nearly one-pass language that are

truly one-pass can be supported by LL- and LR-attributed grammars.

28

expr0 - expr1 + term1

{

}

expr1 .ENV = expr0 .ENV;
term1 .ENV = expr0 .ENV;

expr0 - term1
{

term1 .ENV = expr0 .ENV;

}

term0 - term1 * factor1

{

}

term1 .ENV = term0 .ENV;
factor1 .ENV = term0 .ENV;

term0 - factor1

{
factor1 • ENV = term0 . ENV;

}

factor0 - identifier1

{
factor0 .DEF = lookup(identifier1 . TAG, factor0 . ENV);

}

factor0 - (expr1)

{
expr1 • ENV = factor0 • ENV; ,

}

Figure 5.1 A sample LR-attributed grammar

5.3 A Practical Organization that Supports Semantics-directed
Error Recovery

Despite the fact that LL- and LR-attributed grammars provide workable models of

compilation for semantics-directed error recovery, the recovery techniques implemented

as part of this work are based on an alternative model. The main reason for rejecting
LL- and LR-attributed grammars was efficiency. Although much effort has been devoted
to developing compiler generation systems based on attribute grammars, none of those

I

"'

29

systems produce implementations that are acceptably fast and only the most restrictive

systems are acceptable in terms of storage requirements.

Another reason for rejecting LL- and LR-attributed grammars is that they are hard

to use. It is pointed out in [LRS7 4] that it is difficult to write LL(k) grammars for real

programming languages. While it is relatively easy to write LR(k) grammars for

programming languages, the restrictions on semantic operations make it difficult to write

LR-attributed grammars. The difficulty of writing attribute grammars for programming

languages is possibly the main reason attribute grammar based compiler generators are

not widely used. Table-driven parsing techniques gained acceptance before they began to

match the efficiency of hand-coded parsers because it is easier write a grammar for a

language than it is to hand-code a parser. Attribute grammars, on the other hand, are

often more difficult to write than equivalent hand-coded semantic routines.

A major cause of the inefficiency of compilers based on LL- and LR-attributed

grammars is that current implementations of attribute grammars do not model the

functions of symbol tables efficiently. Symbol tables are normally designed to allow rapid

insertion, deletion, and look up of symbols. Attribute grammars, however, do not permit

the values of attributes to change once they have been set. Therefore, it is difficult to

emulate a dynamic structure such as a symbol table without incurring large space or

time overheads. The data structure most often)lsed to implement symbol tables for

attribute grammars is the inverted tree. An inverted tree is a directed tree in which the

edges go from the leaves to the root. Inverted trees support rapid insertion and deletion

of symbols, and require no more space than normal symbol tables. However, the average

time required to look up a symbol in an inverted tree is proportional to the number of

currently visible table entries. Therefore, compilers that use inverted trees to represent

symbol tables are too slow for production use.

An obvious solution to the problem of efficiently modeling the functions of a symbol

table is to add a conventional symbol table to an attribute grammar. That is the

approach taken in this work. The semantic functions of the attribute grammar are

extended to include semantic actions that use and modify the symbol table. The symbol

table must be implemented in a way that permits symbol table operations to be undone.

Two symbol table organizations that support reversible semantics are discussed in

Section 5.4.

Once the decision was made to use a symbol table, it appeared that there would be

no need for inherited attributes. The implementation of the Pascal auditor uses only

synthesized attributes. Hence, it was possible to use an LALR(l) parser generator to

produce the parser and semantic analyzer for the Pascal auditor. Since LALR(1) parser

fncall - fnpart '),

fnpart - fnhead expr

fnhead - fnname '(' fnpart ',

fnname - name

name - IDENTIFIER

Figure 5.2 Grammar for function calls without using inherited attributes

30

fncall -+ name '(' expr-list ')'

expr-list -+ expr-list ',' expr expr

name -+ IDENTIFIER

Figure 5.3 Grammar for function calls using inherited attributes

generators are more common than attribute grammar based compiler generators, the

techniques used in the Pascal auditor should be more broadly applicable than techniques

based on LR-attributed grammars. However, avoiding inherited attributes has its

drawbacks. Some of the rules of the grammar had to be factored in unusual ways to

permit semantic checking to be done while parsing. If the implementation had

incorporated both a symbol table and inherited attributes, a simpler grammar could have

been used. For example, the grammar for function calls used in the Pascal auditor is

shown in Figure 5.2. The rules are factored so that type information obtained from the

symbol table entry for the function name is available to the semantic routines for

parameters. If the Pascal auditor had been implemented using an LR-attributed

grammar, the more natural grammar for function calls shown in Figure 5.3 could have

been used instead. Type information obtained from the function name could be passed

to the semantic routines for parameters through inherited attributes.

The model organization of a compiler used in this work consists of an LALR(l)

parser, a symbol table, and synthesized attributes. The values of the synthesized

attributes are stored in a semantic stack which is associated with the parse stack. The

ability to reverse the effects of semantic operations on the parse stack is implemented by

copying and restoring the semantic stack as necessary. This model is not far different

from the organization of a conventional one-pass bottom-up compiler. The major

differences are that semantic actions are not allowed to reference or modify global

variables except through symbol table operations, and that attributes cannot be modified

once set.

The expressive power of this model of compilation is less than that of the LR

attributed grammars. Therefore, the set of languages for which semantic analysis can be

linked with parsing under this model of compilation is a subset of the languages for

which semantic analysis can be linked with parsing using LR-attributed grammars.

Hence, this model of compilation is satisfactory only for languages that are nearly one

pass languages.

5.4 Symbol Tables

Special symbol table capabilities are needed to support semantics-directed error recovery.

If any changes are made to the symbol table while testing a potential recovery, it must

be possible to undo those changes. The ability to undo symbol table operations that

were done during normal compilation can also prove useful. This section describes two

symbol table organizations that allow symbol table operations to be undone. The first

organization permits only those operations done while testing recoveries to be undone.

The second allows the symbol table to be backed up to any previous state.

31

Most modern programming languages are block-structured. In a block-structured

language, scopes of declarations are tied to syntactic constructs called blocks. The blocks

are strictly nested. Four symbol table operations are needed to be able to compile a

strictly block-structured language, namely

1. look up the current definition of a symbol,

2. insert a new definition for a symbol at the current nesting level, ,
3. increase the current nesting level, and

4. delete all definitions at the current nesting level and then reduce the

nesting level by one.

Almost all programming languages include a few features that violate the rules of block

structuring. Additional operations may be needed to implement those features.

One way of implementing symbol tables so that the effects of symbol table

operations can be undone involves using two tables. The first symbol table is used

during normal compilation. No semantic operations done while testing a recovery are

allowed to affect the first table. During a test, the second table is used as a filter through

which the effects of symbol table operations are implemented. Each entry in the second

table contains a mark bit that indicates if the entry has been deleted. It is assumed that

a special value called undefined is returned when an attempt is made to look up an

undefined symbol. A global flag indicates when the compiler is testing a possible

recovery. During normal compilation, the first table is used for all operations. Before

testing a recovery, the global flag is turned on and the second table is cleared. Any

auxiliary variables used by the symbol table, such as the variable that records the

current nesting level, should be copied so that they can be restored at the completion of

the test.

The routine to look up definitions of symbols uses the first table during normal

parsing. While testing a recovery, the routine first looks for a symbol in the second

table. If the second table does not yet contain a copy of the symbol, the definition is

obtained from the first table. The algorithm shown in Figure 5.4 implements the look up

routine. Lookup places copies of definitions obtained from the first table into the second

table instead of simply setting a pointer to the original definition because the semantic

routines may modify the definition. If the compiler writer knows that a definition cannot

be changed by later semantic actions, the second table can share the definition with the

first table.

Inserting definitions and increasing the nesting level are both easily handled. If a

recovery is being tested, the definition is inserted into the second table; otherwise it is

inserted into the first. Increasing the nesting level does not require special handling; any

semantic action can increase the nesting level.

The operation consisting of deleting all symbols at the current level and reducing

the nesting level is called popping the scope. Popping the scope while testing a recovery

poses some hard problems. Entries in the first table cannot simply be deleted since they

will have to be restored at the end of the test. They could be unlinked from the table

and yet saved for later restoration. However, that involves complicated pointer

manipulations. One solution is to use the second table to mark those symbols that are no

longer defined after popping the scope. Let entry be a function that takes an integer £

and a symbol s as its arguments. Entry returns the highest level entry among the set of

entries for s that were entered at a nesting level less than or equal to e. If the set of

32

function Lookup(s: symbol): definition;

begin

end

if' testing a recovery then
begin

end

if' the second table contains an entry for s then
if' that entry is marked as -deleted then

return undefined;
else

else
begin

return the definition of s from the second table;

if' the first table contains an entry for s then
begin

end

end
else

make a copy of the definition of sin the first table;

enter that definition into the second table;
return the copied definition

return undefined;

else if' the first table contains an entru for s then
return the definition of s from the first table

else
return undefined

Figure 5.4 The look up algorithm

entries is empty, entry returns undefined. Then popping the scope can be implemented

by the procedure shown in Figure 5.5.

The scheme described above makes restoring the symbol table after testing a

recovery trivial. No symbol table operations performed during a test make any changes

to the first table. After testing a recovery, the global Hag signaling that a test is being

performed is turned off, all storage allocated to the entries in the second table is freed,

and the global variables whose values were saved at the start of the test are reset to their

previous values.

This symbol table organization requires some additional restrictions on semantic

operations. Care must be taken not to rely on the addresses of definitions. If a semantic

routine depends on the locations of definitions returned by the look up routine, there is a

chance the routine will not work correctly while testing a recovery. If a definition must

be copied by the look up routine, its address during normal compilation will not be the

same as its address during testing. Also, there may be problems with shared data

structures. The look up routine may make separate copies of a structure shared by two

or more definitions. Therefore, if the semantic routines rely on changes to the structure

affecting every definition that accesses it, they may fail while testing a potential recovery.

The efficiency of this table organization depends on the data structures used to

represent the tables. The routine for popping the scope is particularly sensitive. If the

tables are implemented using hashing with chaining where the chains can hold entries for

procedure PopScope;
var l, n: integer;
begin

end

if testing a repair then
begin

end
else

l - the current nesting level;
n - the nesting level when the test began;

delete all entries in the second table
whose nesting level is l;
if l < n then

for each entry e in the first table
whose nesting level is l do

begin ,

end

s - the symbol defined by e;
if there is no entry for s in the second table then

begin

end

e1- entry(l, s);
if e1 = undefined then
begin

end
else

make an entry for s in the second
table at the lowest nesting lwei;
mark that entry as having been deleted

insert a copy of e1 in the second
table at the same nesting level as e1

delete all entries in the first table
whose nesting level is l;

the current nesting level - l- 1

Figure 5.5 The algorithm for popping the scope

33

different identifiers, then when a symbol is deleted, it will sometimes be necessary to scan

an entire chain to discover that there are no lower level definitions of that symbol. A

better representation is to use a name table with separate definition chains for each

name. That representation makes it possible to determine if there are any lower level

definitions of a given symbol in time proportional to the number of definitions. If the

routines that copy entries from the first table to the second also create pointers back to

the original entry, that condition could be checked in constant time.

The symbol table organization described above permits the effects of symbol table

operations done during a test of a potential recovery to be undone. However, it does not

permit operations done during normal compilation to be undone. An alternative

organization that provides that capability has been developed. The alternative

34

organization was intended for use with a backtracking error recovery algorithm. That

algorithm was abandoned because it was too slow. However, the symbol table

organization proved attractive in its own right and was used in the implementation of

the Pascal auditor. Other reasons for wanting to be able to reverse the effects of symbol

table operations done during normal compilation are discussed in Sections 6.5 and 7 .5.

The alternative organization uses a specialized history mechanism. A counter called

the timec/ock is used to keep track of the sequence of symbol table operations. The

timeclock is incremented whenever the symbol table's contents are altered. It is also

incremented whenever the nesting level is increased. Each symbol table entry contains

two special fields: the entered field and the deleted field. The two fields provide the

information needed to back up the symbol table. The entered field is assigned the value

of the timeclock at the time the entry is inserted. The deleted field is initially set to

zero. Whenever an entry is deleted, the routine that performs the deletion checks if its

deleted field's value is still zero. If so, the deleted field is assigned the current value of
the timeclock. The reason the deleted field might not be zero is that the entry may have

been deleted and then replaced. Deleted entries are not destroyed; they are placed on a

list of deleted entries.

This symbol table organization requires little that is unusual from the routines

implementing symbol table operations. The look up routine does nothing beyond its

normal function. The timeclock must be incremented whenever the nesting level is

increased. Whenever an entry is inserted, the timeclock must be increased and its value

must be recorded in the entry's entered field. Popping the stack is a bit more involved.

First, the timeclock is incremented. Then each entry at the current nesting level is

removed from the symbol table and placed on the deleted entries list. If an entry's

deleted field is zero, that field is assigned the current value of the timeclock. The entries

on the deleted entries list are not copies; they are the original entries in their original

locations.

The space requirements of this organization are greater than normal. The extra

fields needed for each table entry will add a significant fraction to the size of the symbol

table. The fact that symbol table entries are not deallocated when they are deleted also

adds to its space requirements. However, there are many production compilers that also

never delete symbol table entries. Multi-pass compilers seldom delete any symbol table

entries until after the analysis phase of compilation is completed. Also, some compilers

do not delete symbol table entries until after completing code generation so that they can

produce memory maps for all named objects.

If the error recovery algorithm is to make use of the ability to undo symbol table

operations done during normal compilation, it must have a way of matching

configurations of the parser with configurations of the symbol table. Assume that the

error recovery algorithm does backtracking. If the parse is backed up to an earlier

configuration, the symbol table should be backed up to the configuration it had at the

time the parser first entered that configuration. If the symbol table is not backed up to

the proper configuration, further semantic analysis could result in spurious errors being

indicated. One way of linking configurations of the symbol table and configurations of

the parse stack is to record the timeclock and the nesting level each time the parser

shifts over a symbol. The recorded values of the the timeclock are called the timestamps

of the configurations. Given a timestamp and a nesting level, the symbol table can be

backed up to the corresponding configuration.

The history mechanism makes it possible to back up the configuration of the symbol

table either temporarily or permanently. A semantics-directed error recovery algorithm

35

that performs backtracking needs the ability to temporarily back up the table to be able

to test possible recoveries. Once a recovery is selected, it permanently backs up the

symbol table and then implements the recovery.

Temporarily backing up the symbol table involves two routines: one to back it up,

and one to restore it. The routine to back up the symbol table takes two arguments, the

timestamp t and the nesting level l for the configuration to be restored. The text of the

back up routine is shown in Figure 5.6.

procedure Backup(t, l: integer);
begin

end

SavedTimeClock +- TimeClock;
SavedNestingLevel +- NestingLevel;
NestingLevel +- l;

Inactive +- nil;
for each entry e in the symbol table such that e.entered > t do

begin

end;

remove e from the symbol table;
append e to Inactive

for each entry e in Deleted such that e.entered < t and e.deleted > t do

begin
remove e from Deleted;
place e back in the symbol table

end

Figure 5.6 The back up routine

The routine references some global variables. TimeClock is the name of the timeclock.

NestingLevel is the variable containing the nesting level. SavedTimeClock and

SavedNestingLevel are used to save the values of the timeclock and nesting level so that

they can be restored later. Inactive is a global list of entries. It holds all entries dumped

from the symbol table. Deleted is the deleted entries list. Note that the timeclock is not

set to t.
The routine shown in Figure 5.7 restores the symbol table. The reason Backup did

not reset the timeclock can now be explained. The symbol table entries added after

backing up the table can be identified because their entered fields are greater than the

old timeclock. Similarly, the entries that were deleted after backing up the table can be

identified because their deleted fields are greater than the old timeclock.

Permanently backing up the symbol table is a comparatively simple operation. The

algorithm for permanently backing up the symbol table is shown in Figure 5.8.

This symbol table organization requires that semantic operations be prohibited from

modifying definitions obtained from the symbol table. Since copies of definitions are not

made while testing recoveries, as was the case with the preceding symbol table

organization, changes to definitions made while testing recoveries would not be undone

after the test is completed. One benefit of not making copies is that the semantic

36

proeed ure Restore;
begin

end

for each entry e in the symbol table such that

e.entered > SavedTimeClock do
begin

end;

remove e from the symbol table;
free the storage allocated to e

for each entry e in Deleted such that e.entered > SavedTimeClock do

begin
remove e from Deleted;
free the storage allocated to e

end;

for each entry e in the symbol table such that e.deleted =f: 0 do

begin

end;

remove e from the symbol table;
append e to Deleted

for each entry e in Deleted such that e.deleted > SavedTimeClock do

begin
e.deleted - 0;
remove e from Deleted;
place e back in the symbol table

end;

for each entry e in Inactive do
begin

remove e from Inactive;
place e back in the symbol table

end;

TimeClock - SavedTimeClock;
NestingLevel - SavedNestingLevel;

Figure 5.7 The restore routine

routines can rely on the definitions always being at the same addresses. That consistency

is exploited in the type equivalence routines of the Pascal auditor.

The two symbol table organizations described above exhibit very different

characteristics. The first organization adds little to the cost of symbol table operations

performed during normal compilation. The only added cost is the time to test the global

flag indicating that the compiler is not testing a recovery. The costs of performing

symbol table operations while testing a recovery, however, are high. Further, the only

space overhead of the scheme during normal compilation is the space required for the flag

bit. While testing a recovery, extra space will be needed for the copies of the entries.

•
procedure Reset(t, l);
begin

end

TimeCiock - t;
NestingLevel - l;

for each entry e in the symbol table such that e.entered > t do

begin

end;

remove e from the symbol table;

free the storage assigned to e

for each entry e in Deleted such that e.entered > t do

begin
remove e from Deleted;
free the storage assigned to e

end;

for each entry e in Deleted such that e.deleted < t do

begin
e.deleted - 0;
remove e from Deleted;
place e back in the symbol tab

end

Figure 5.8 The reset routine

37

The history-based organization suffers the same time and space overheads during normal

compilation as it does while testing a recovery. The overheads consist of maintaining the

entered and deleted fields of the entries and maintaining the deleted entry list.

Experience with the Pascal auditor has shown that the time spent backing up and

restoring the symbol table before and after each test is small. In practice, testing a

recovery usually does not involve making any changes to the symbol table, and so there

is no need to restore the table.

The choice between the two organizations is simple so long as the ability to back up

the symbol table is used solely to implement semantics-directed recovery. If the recovery

algorithm uses backtracking, the history-based organization must be used. If it does not

backtrack, the costs of using the history-based organization during normal compilation

give the edge to the simpler organization. However, there can be other reasons for using

the history-based organization. Section 6.5 shows how that organization could be used to

implement a limited backtracking capability. Section 7.5 shows its advantages in

implementing panic mode recoveries. The compiler writer must decide if those benefits

outweigh the costs.

The two symbol table organizations described above are representative of many

possible ways of implementing a symbol table suited for semantics-directed error

recovery. Symbol table organizations that permit undoing symbol table operations done

during normal compilation appear to require maintaining some data that is not needed

for normal compilation. The time spent collecting that data will add to the compilation

time of programs that are free of errors. Organizations that permit only operations done

38

while testing potential recoveries to be' undone are less flexible, but can be implemented

with little or no impact on the time required to compile error free programs.

6

Erroneous Reductions

Errors often are not detected until after the parser has done some reductions based on

the erroneous input. Consider the erroneous statement

X= 0.0

The apparent error is that the symbol '=' appears in place of the symbol ':=' Some

parsers will not detect this error until after reducing x to a statement since, in Pascal, an

identifier by itself is a syntactically correct procedure statement. Unless the error

recovery algorithm is able to undo the effects of the erroneous reductions, it will be

unable to find a good recovery. At best, it might report that a malformed statement has

been detected.

The Pascal if-statement illustrates a harder problem. Consider the statement

if x < 11 then min := x; else min := 11

Pascal does not permit a semicolon to precede the keyword else. However, a natural

grammar for if-statements would have the parser reduce the text to the left of the

semicolon to a statement before shifting the semicolon. If that happens and there is no

means of undoing the erroneous reductions, the likely response to this error would be to

delete the keyword else. To avoid the erroneous reductions in this case, the parser

would have to check two symbols of lookahead before doing a reduction.

There are two general methods for avoiding the harmful effects of erroneous

reductions. Parsers can be constructed so that they are less likely to perform an

erroneous reduction. Alternatively, it is possible to provide the ability to undo erroneous

reductions. This chapter explores implementations of both techniques.

6.1 General Backtracking

Some authors [Lev75, FL76, MM78] have advocated using a general backtracking facility

to solve the problem of erroneous reductions. Two methods of implementing such a

facility have been suggested. One method involves building the derivation tree for each

nonterminal symbol as it is recognized. "When a error is detected, the trees provide the

information needed to undo any reductions.

The other method for implementing general backtracking relies on reparsing

portions of the input text. An index into the input text is maintained for each entry in

the parse stack. The index for an entry references the first token in the text from which

the entry was derived. Suppose that the configuration of the parser is to be backed up to

the configuration it had before shifting some token t. First, the rightmost entry e in the

parse stack whose index references either t or a token to the left oft is found. The index

into the input text for e is saved, and then e and all entries to the right of it are popped

39

40

off the parse stack. Lastly, the portion of the input text starting from the token

referenced by the index that was saved and ending with the token immediately to the left

of t is reparsed.

Backtracking and semantics-directed error recovery are compatible. However, if

backtracking is used, the state of the parse and the state of semantic analysis must be

kept consistent. Thus, if some reductions are undone, the effects of the semantic actions

associated with them must also be undone. A compiler based on the model of

compilation described in Chapter 5 that uses a history-based symbol table organization

can efficiently reverse the effects of semantic actions.

The techniques for implementing general backtracking that have been proposed so

far are too slow to be practical. The parse tree for a program typically occupies from ten

to one hundred times as much space as the original input text. The time and space

needed to construct derivation trees render the derivation tree based method impractical.

The method based on reparsing does not suffer from serious space overheads. If there is

not enough space to store the input tokens in main memory, they can be reread from the

source file. The trouble with reparsing is the time involved. Suppose that an error is

detected just after a large procedure has been recognized. Backing up the parse by one

token would require reparsing almost the entire procedure.

Error recovery algorithms that perform general backtracking can have trouble with

multiple errors. Suppose the recovery algorithm backs up over text created by an earlier

recovery. If the algorithm makes a change to the input text to the left of the patched

text, it may cause the patched text to become erroneous. Indeed, it may even cause the

original text to be correct. None of the proponents of backtracking have suggested a

satisfactory solution to this problem.

6.2 Suppressing Default Reductions

Default reductions are a commonly used space saving technique for LR parsers. Suppose

M is an LR parser, and f is its action function. Default reductions are equivalent to

creating a new parser M' whose action function f' can be encoded in less space. M and

M' are identical except for their action functions. The function f' differs from f only in

that for some arguments for which f returns the error action, f' returns a reduce

action. If q is a state such that for some lookahead string x f(q, x) is a reduce action,

then for every lookahead string v such that f { q, v) is the error action, /'(q, v) is a

reduce action. The language recognized by M' is the same as the language recognized

byM.

The only effect default reductions have on parsing is to delay syntactic error

detection until after some erroneous reductions have been done. Consider the erroneous

statement

k := m, + 1

where k and m are integer variables. The apparent error is that an extra comma has

been inserted. A canonical LR(l) parser for Pascal will not do any reductions involving

m before the error is detected. However, an LR(l) parser that uses default reductions

will reduce the text preceding the comma to a statement before detecting the error.

Thus, if the error recovery system is unable to do backtracking, it will not be able to

recover gracefully from this error.

41

Tests based on the Ripley-Druseikis suite [RD78] indicate that most erroneous

reductions are the result of default reductions. Therefore, eliminating default reductions

will prevent most erroneous reductions. A side benefit of not using default reductions is

that parsers that do not use default reductions can be made to run faster than those that

do. Unfortunately, eliminating default reductions can cause the parse tables to grow

dramatically. The size of the increase depends on the table packing algorithm used to

encode the parse tables. For the parser generator Bison, the size of the parse tables for a

grammar for Fortran 77 [ANS78] more than doubled when default reductions were not

used. The size of the parse tables for a Pascal grammar were about 2.8 times as large.

A parser that uses default reductions can be extended so that its error checking

capabilities equal those of parsers that do not use default reductions. A bit array, called

the default array, can be used to indicate those contexts in which a default action should

be done. The default array is indexed by states and lookahead strings. If the action for

a given state and lookahead string is the default action for that state, the entry for that

state and symbol is 1; otherwise, it is 0. A parser can avoid performing erroneous default

reductions by checking the default array before performing each default reduction to see

if the lookahead is legal.

The advantage of using a default array over eliminating default reductions is that

less space is needed. The default array for the Pascal grammar mentioned above has

been generated. When represented as a simple two-dimensional bit array, the default

array occupied 2,648 bytes. About 40% of the rows of the default array contained all

zeros, which suggests that standard bit table packing techniques could dramatically

reduce the space needed to represent the default array. Except for the default array

itself, the tables used by the version of the parser that uses the default array to check

the legality of default reductions are identical to those used by the version of the parser

that uses default reductions without checking that the lookahead token is legal. Since

the default array is about 52% as large as the other tables taken together, the parse

tables for the version of the parser that uses the default array are about 52% larger than

the parse tables for the version of the parser that uses default reductions without

checking their legality. This increase is admittedly large. Nonetheless, the tables for the

version of the parser that uses the default array are only about 57% as large as the

tables for the version of the parser that does not use default reductions.

It may seem that using a default array would make a parser slower. However,

timings have shown that using a default array can make a parser faster. The two parsers

used for the timings were versions of the parser used in the Pascal auditor with all

semantic operations removed. The only difference between them was that one tested if a

default reduction should be done before testing if a shift should be done and the other

did not. The version of the parser that did the early test for default reductions was as

fast as or slightly faster than the control version for all programs used in the timings.

The reason for this result is now clear. Parsers typically perform many more reductions

than shifts, and most of those reductions are default reductions. Normally, a parser

must check if a shift or a nondefault reduction should be done before applying a default

reduction. However, if a default array is used, it is possible to tell if a default reduction

should be done without first having to check if other parsing actions should be done.

Therefore, the net parsing time is reduced.

Whether suppressing default reductions prevents enough erroneous reductions to

permit good error recovery depends on the language being parsed and on the specific

parsing technique. For Pascal, suppressing default reductions is not always sufficient, as

is shown by the if-statement example given at the start of this chapter. Also, for parsers

using SLR(l) tables, just elimin~ting default reductions will still allow many harmful

42

erroneous reductions. For parsers using LALR(1) tables, suppressing default reductions

still allows some erroneous reductions that would be avoided if full LR(1) error checking

were performed. However, the Ripley-Druseikis test suite contains no examples of errors

where LALR(1) error checking allows erroneous reductions that would not also be

allowed with full LR(1) error checking.

6.3 Pretesting

A canonical LR(1) parser never does a reduction if the symbols represented by the

contents of the parse stack together with the lookahead symbol do not constitute a

correct prefix. Parsers using SLR(1) or LALR(1) tables, on the other hand, sometimes do

reductions when the lookahead is not part of a legal input. However, they will never

shift over a symbol that is not part of a correct prefix. That fact can be exploited to

allow full LR(1) error checking when parsing with SLR(1) or LALR(1) tables.

LR(1) pretesting of a configuration of an LR parser consists of testing if the parser

will enter an error configuration after doing zero or more reductions. Pretesting can be

implemented by emulating parsing on an auxiliary parse stack. A more efficient

implementation is described below. Pretesting can provide full LR(1) error checking in a

parser using SLR(1) or LALR(1) tables. Whenever the parser is about to do a reduction

while in a state that was entered by shifting over a terminal symbol, it should pretest its

current configuration. If pretesting reveals that the parser will enter an error

configuration after performing some reductions, the lookahead symbol cannot be part of

a legal sentence. In such a case, the error recovery system should be invoked before any

reductions are done.

LR(1) pretesting can be implemented by the function Shiftable shown in Figure 6.1.

Shiftable takes a symbol as its argument. For pretesting, the symbol should be the

lookahead symbol. ParseStack is the global parse stack. ShadowStack is a local variable

used to record the effects of shifts done during testing. ShadowStack is needed because

the parse stack must be left unchanged. The variable j indicates the current number of

entries in the shadow stack. Note that j is never greater than one unless a .>.-reduction is

done. If the parser never does a .>.-reduction, Shiftable can be made much simpler.

Shiftable also uses some global functions. The function f is the parsing automaton's

action function, and g is its goto function. The function rhslen takes a rule as its

argument and returns the length of its rhs. The function lhs takes a rule as its argument

and returns its lhs.

Using Shiftable to perform LR(1) pretesting amounts to parsing the input text

twice. Some of the duplicated effort can be avoided by recording the sequence of rules

used in reductions during pretesting. Whenever pretesting reveals that the next token

can be shifted, the parser can apply the recorded sequence of rules without having to

recompute it.

LR(1) pretesting permits full LR(1) error checking to be done by a parser using

SLR(1) or LALR(1) tables. In that respect, pretesting is superior to suppressing default

reductions. However, unlike suppressing default reductions, pretesting significantly slows

the parser. Timings indicate that LR(1) pretesting may add as much as 15% to the time

spent in parsing a program. However, this increase is not as bad as it might seems since

the total time a compiler spends parsing is typically less than 5% of the total compilation

time. Therefore, pretesting should add less than 1% to the total compilation time.

function Shiftable(s: symbol): Boolean;

var ShadowStack: stack of symbol;

begin

end

i - the index of the top of the parse stack;

i-0;
k - the current state;
while f(k, s) =reduce p for some rule p do
begin

end;

j- j- rhslen(p);
if j < 0 then
begin

i- i + j;
k- g(ParseStack[i], lhs(p));

i-1
end
else
begin

end;

k- g(ShadowStack[i] - lhs(p);

i- i + 1;

ShadowStack[j] = k

if f(k, s) = error then
return false

else
return true

Figure 6.1 The function Shiftable

6.4 LR(k) Error Checking via Stack Restoration

43

It is possible to provide full LR(k) error checking, for fixed k, in an LR(1) parser using

LR(1), SLR(1), or LALR(1) tables. A practical method for implementing LR(k) error

checking was suggested by Burke and Fisher [BF82]. While parsing, the numbers of the

rules used in reductions are stored in a FIFO queue called the rule number queue.

Whenever the parser shifts over a terminal symbol, a marker is placed in the rule

number queue. The marker indicates which symbol is shifted and the location of any

associated semantic data. The parser counts the number of markers in the rule number

queue. Whenever there are k markers in the queue, the parser removes entries from it

one at a time. Each time a rule number is removed from the queue, the semantic action

associated with that rule is applied to the semantic stack. Then, a number of elements

equal to the length of the rhs of the rule are popped off the stack and the semantic value

associated with the lhs of the rule is pushed onto it. When a marker is removed from the

queue, the semantic data associated with the marker is pushed onto the semantic stack,

and then parsing resumes. Thus, the Burke-Fisher technique for LR(k) error checking

imposes a k token delay between the point when a rule is used during parsing and the

44

point when associated semantic action is applied. Therefore, the parser stack and the

semantic stack must be implemented as separate data structures.

After an error is detected, the contents of the parse stack must be restored. Let f.

be the number of markers in the rule number queue. Then the contents of the semantic

stack correspond to the contents of the parse stack before it shifted over the last f.

tokens. Because of that delay, the semantic stack already contains the proper values.

Restoring the parse stack brings it into line with the semantic stack. To facilitate the

restoration, Burke and Fisher use yet another stack called the symbol stack. The symbol

stack is maintained in parallel with the semantic stack. \Vhenever the parse applies a

rule to the semantic stack, it is also applies that rule to the symbol stack. A number of

elements equal to the length of the rule's rhs are popped off the symbol stack, and then

the symbol on the rule's lhs is pushed onto the symbol stack. \Vhenever a marker is

found, the token named in the marker is pushed onto the symbol stack. Thus, the

symbol stack contains the sequence of symbols corresponding to the accessing symbols of

the sequence of states in the parser stack just before it shifted over the f-th previous

token. Therefore, the parse stack can be restored by successively applying the parser's

goto function to the elements of the symbol stack, starting from the parser's initial state.

The lookahead can be reconstructed from the markers in the rule number queue.

It may appear that the Burke-Fisher algorithm could be made faster by saving the

states corresponding to the earlier version of the parse stack instead of the symbols. The

problem is that the states would have to be computed from the goto function. Therefore,

the time required to parse error-free text will increase.

There is an alternative way of restoring the parse stack that does not require

maintaining a symbol stack. The rule number queue together with a copy of the

grammar being parsed provide the information needed to restore the parse stack. The

effects of the reductions corresponding to the contents of the rule number queue must be

undone in the reverse of the order in which they were ·done. \Vhile there are any rule

numbers left in the rule number queue, the effects of the corresponding reductions must

be reversed. If the accessing symbol of the topmost state in the parse stack is a terminal

symbol, the state is popped off the stack and its accessing symbol is placed in a

lookahead buffer. That process is repeated until a state whose accessing symbol is a

nonterminal symbol is at the top of the parse stack. That state is popped off the stack.

Next, the rule number at the end of the rule number queue is removed from the queue.

The states the parser would enter while shifting over the rhs of the indicated rule

starting from the current top of the parse stack are then pushed onto the parse stack.

This method is used to implement LR(2) error checking in the Pascal auditor.

6.5 Limited Backtracking

The methods described so far for suppressing the effects of erroneous reductions work for

syntax errors only. Semantic errors are detected by the semantic routines executed when

a reduction is performed. There are cases where a semantic check cannot be done until

after some erroneous reductions have been performed. Consider the program fragment

shown in Figure 6.2. The likely error is that the comma(',') in the call of writeln should

have been a period ('.'). The semantic routines are able to determine that C cannot be

an argument of writeln (records cannot be written using writeln). However, they cannot

do so before C has been reduced to the nonterminal for expressions. Since an expression

cannot appear as the variable in a selection, the error recovery algorithm will be unable

to recover by replacing the comma with a period unless those reductions can be undone.

program p(input, output);
type complex =

record
re, tm: real

end;
var C: complex;

begin

writeln(C, re);

end.

Figure 6.2 A semantic error requiring backtracking

45

While general backtracking techniques are too slow to be practical, a limited

backtracking capability can be provided at a cost comparable to that of the full LR(k)

error checking mechanism described in the previous section. The backtracking facility

considered here provides the ability to back up both the parser and the semantic

analyzer to their configurations just before the parser shifted over the k-th previous

token. This facility assumes the model of compilation described in Section 5.3 together

with the history based model of symbol tables described in Section 5.4. The method can

be extended to handle an inherited attribute stack as well. Therefore, it could be used in

an evaluator for LR-attributed grammars.

Suppose LR(k) error checking is to be provided. The limited backtracking facility

uses a circular buffer with k+1 entries. Each buffer entry is a record of the form:

record

end

lowest:
top:
timestamp:
nestinglevel:
ParseStack:
Semantic Stack:

integer;
integer;
integer;
integer;
array [1 .. MAXDEFTH] of integer;

array [1 .. MAXDEPTH] of SemanticType

where MAXDEFTH is the maximum size of the parse stack and SemanticType is the

type of the entries in the semantic stack. Note that each buffer entry is large enough to

contain copies of the entire parse stack and the entire semantic stack. Therefore, k must

be small or else too much space will be needed. The parser keeps track of the number of

the lowest stack element affected by any reduction since the previous shift. In an

implementation for LR-attributed grammars, it must also keep track of the lowest entry

in the inherited attribute stack that has been affected. After the parser shifts over a

terminal symbol, a snapshot of the entries of the parse stack and the semantic stack that

have changed since the previous shift are stored in the buffer. Let l be the number of

the lowest element in the parse stack that has changed, and let t be the number of the

current top of the parse stack. Then the snapshot consists of an entry in which the field

lowest is set to l, top is set to t, timestamp is set to the current value of the timeclock,

46

nesting/eve/ is set to the current nesting level, and elements l through t of the parse

stack and the semantic stack are copied into the corresponding locations of the

ParseStack and SemanticStack fields, respectively. Unlike the stack restoration scheme,

the limited backtracking facility does not impose a delay between the time a reduction is

done and the time the corresponding semantic actions are executed. If there are any free

slots in the buffer, the snapshot is stored in the next free slot. If every slot is full, the

slot that contains the oldest snapshot is freed and the new snapshot is stored there. The

parser and error recovery routines must keep track of the number of full slots.

The buffer provides the information needed to do backtracking. Suppose an error

has been detected. Let m be the number of full slots. If the buffer is empty, no

backtracking is done. Otherwise, the last m -1 tokens to be shifted are placed in a

lookahead buffer. Since slots are filled just after doing a shift, the accessing symbol of

the state at the top of the recorded segment of the parse stack will be the token the

parser shifted to enter that state. Therefore, for each full slot, the token the parser

shifted just before the slot was filled can be determined. For each full slot other than the

oldest full slot, the token shifted when the slot was filled is determined, and it and its

associated semantic value are placed in the lookahead buffer. The symbol table is backed

up to the point indicated by the timestamp and nesting level fields of the oldest full slot

in the buffer. The contents of the parse stack and the semantic stack are then restored.

The segments of the parse stack and the semantic stack stored in the oldest filled slot are

copied back into locations from which they were copied. The top of each stack is reset to

value of the top field of the oldest slot. Let l be an integer variable. Initially, l is set to

the value of the lowest field of the oldest slot. Starting from the next oldest slot and

working up to the most recently filled slot, the backtracking algorithm checks iff' is less

than l, where £' is the value of the lowest field of the slot. If it is, entries l' through l of

the ParseStack and SemanticStack fields of the slot are copied back into the

corresponding locations of the parse stack and the semantic stack, respectively, and then

l is reset to l'.

For correct programs, the efficiency of this backtracking scheme should be

comparable to the LR(k) error checking techniques described in the previous section.

The scheme's efficiency depends on the size of the entries in the semantic stack. If those

entries are large, they will take a long time to copy. However, if they are too large,

parsing will be slow regardless of whether any backtracking capabilities are provided.

Therefore, the compiler writer already has reasons to make those entries as small as

possible.

6.6 Comparing the Techniques

A variety of schemes for avoiding the harmful effects of erroneous reductions have been

presented. Each technique other than general backtracking is suitable for use in a

practical compiler. Each technique other than general backtracking has been

implemented and tested using the Ripley-Druseikis suite of erroneous Pascal programs

[RD78]. The Ripley-Druseikis suite consists of 126 Pascal programs containing about 200

errors. The results of those tests are considered in this section.

The Ripley-Druseikis suite revealed some interesting facts about the benefits of

suppressing erroneous reductions. The Pascal auditor implements semantic checking as

described in Section 4.3 and LR(2) error checking as described in Section 6.4. Disabling

both semantic checking and the LR(2) error checking mechanism caused the error

recovery algorithm to yield poorer recoveries for 36 errors. Exactly one error was

47

diagnosed more accurately. \Vhen only the LR(2) error checking mechanism was

disabled, only 7 errors were not handled as well as when both error checks were made. A

reason for the improvement is illustrated by the example given at the start of this

chapter. In that example, the symbol x in the statement

X= 0.0

is reduced to a procedure statement and then to a statement before the error is detected.

However, if x is not a procedure identifier, the semantic error is detected before x is used

in a reduction. Therefore, the error recovery routine is able to find the best repair.

\Vhen only semantic error checking was disabled, only 7 errors were not handled as well

as when both checks were made. Almost every error that was less accurately diagnosed

when only semantic checking was disabled was either a procedure call with square

brackets around the parameter list or an array reference with parentheses around the

subscripts.

There was little difference in the results obtained for the various techniques for

avoiding the effects of erroneous reductions. The tests were all done with semantic

checking disabled. There was no difference between the results obtained by suppressing

default reductions and those obtained by doing full LR(1) error testing. There were two

errors for which the recoveries done when using LR(2) error checking were better than

those done when using LR(1) error checking. One of those two errors would have been

handled just as well in the LR(1) case if semantic checking had been enabled. Frankly,

these results are counter-intuitive. It is easy to construct plausible examples for which

LR(1) checking is not sufficient. It is surprising that so few such examples are included in

the test suite.

The Ripley-Druseikis sample of erroneous programs contains no examples of errors

for which limited backtracking proves superior to stack restoration. However, this

absence appears to be an artifact of the sample. The sample was created to test

syntactic error recovery techniques. Therefore, every error represented in the sample can

be detected syntactically. However, an admittedly small sample of erroneous programs

gathered locally indicates that limited backtracking can lead to better recoveries for

about half of those syntactic errors that are detected semantically.

The test results indicate that checking one symbol of lookahead should prove

sufficient for Pascal. Any of the techniques considered could be used to provide that

degree of checking. Suppressing default reductions and using limited backtracking would

appear to be the best methods. Suppressing default reductions would be the clear choice

if speed were the critical factor or if semantic checking were not done. If semantic

checking is done, the best recoveries will be produced with limited backtracking.

If LR(k) error checking is to be done, either stack restoration or limited

backtracking should be used. If semantic checking is not done during normal

compilation, stack restoration would be the method of choice. The semantic restrictions

that must be observed to use the limited backtracking techniques are too burdensome to

be used simply to gain the advantages of LR(2) error checking. If semantic error

checking is done, limited backtracking would be the better choice.

7

Panic Mode for LR Parsers

Panic mode has been used since the late 1950's. Most programming languages then were

line-oriented; i.e., each line of a program could be parsed in isolation. Therefore, a

compiler recover could from a syntax error by discarding the line in which the error was

detected and resuming normal compilation with the following line.

That form of panic mode cannot be used with modern programming languages and

compilers. Most modern programming languages treat line ends as ordinary separators,

undistinguished from blanks, tabs, and other separators. Furthermore, modern parsing

techniques, such as LL(1) and LR(1), are dependent upon left context information that is

stored in the parse stack. If a panic mode recovery leaves the parse stack in an improper

configuration, the parser will probably detect spurious errors later. Therefore, a panic

mode algorithm that simply discards lines will often produce bad recoveries.

Many panic mode algorithms are for use with top-down parsers only. The

algorithms used with LR parsers generally do not work as well as those for top-down

parsers. Some reasons it is easier to implement panic mode for top-down parsers are

discussed in later sections.

This chapter begins with a list of desirable properties for panic mode algorithms. It

surveys some existing panic mode algorithms, and examines their strengths and

weaknesses. A new panic mode technique for LR parsers that is a synthesis of the best

features of some existing algorithms is presented. A user's view of the new technique is

given first, followed by a discussion of implementation issues. The chapter concludes

with a discussion of how semantic analysis may be affected by panic mode recoveries.

7.1 Desirable Characteristics for Panic Mode Algorithms

This section presents a list of desirable properties for panic mode algorithms. The

algorithms presented in later sections are judged by how well they satisfy these

properties. The list is, at least in part, subjective.

A panic mode algorithm should recover as soon as possible. That is, as

little of the input text as possible should be skipped. The types of errors that will cause

an error recovery system to resort to panic mode are, naturally, difficult errors from

which to recover. However, if the panic mode algorithm does not recover as quickly as

possible, there is a chance that the compiler will fail to detect other errors in the input

text. For example, consider the code fragment

i :== i - 1 ; pop the stack }
if i < 0 tehn error;'

There are two apparent errors here; a left comment brace has been omitted on the first

line, and the keyword then has been misspelled on the second. Many panic mode

algorithms would recover from the first error by skipping ahead to the semicolon on the

48

...

49

following line. Therefore, the misspelled keyword on the second line would not be

detected.

A panic mode algorithm should not cause spurious errors. This property is

both clearly desirable and generally unachievable. It also conflicts with the previous

property. If the algorithm tries to recover too soon, there will be instances in which

spurious errors will be indicated. For example, consider the code fragment

while x > 0 do
+ 1)) + a[k];

A possible cause for the error is this example is that a line that should appear between

the two lines shown has accidently been deleted. A panic mode algorithm might recover

from this error by deleting the text between the keyword do and the identifier a, and

resuming normal parsing with a. The array reference a[i] would then appear to be the

start of an assignment statement. However, upon reaching the semicolon, a spurious

syntax error will be detected.

A panic mode algorithm should issue informative error messages. Many

implementations of panic mode produce vague messages such as "syntax error" or

"unexpected input." One reason that programmers make errors that cause panic mode to

be invoked is that they do not understand where it is legal to use particular constructs.

Therefore, if a recovery is not accompanied by a message indicating what type of

construct the panic mode algorithm considered the erroneous construct to be, the

programmer is apt to be more confused than aided by the resulting error message.

Consider, for example, the program fragment

program p(input, output);

begin
var x, y: real;
readln(x, y);

The apparent error here is that a declaration has been include inside a compound

statement. It may be that the programmer believes that declarations should appear

inside compound statements. In that case, an uninformative message such as

"unexpected input" is apt to be confusing. If, on the other hand, the error message

indicated that a statement was expected, the programmer would at least be informed

that a statement rather than a declaration was expected in that context.

A panic mode algorithm should be easy for a compiler writer to use. No

matter how good an error recovery algorithm may be, if it is hard to use, it will not be

used. Some implementations of panic mode require no data other than the parser's

tables. Those algorithms require no effort on the part of the compiler writer. However,

such algorithms cannot be tuned to take advantage of the compiler writer's knowledge of

the language to be compiled. As a result, the recoveries are sometimes of poor quality.

At the other extreme, it has been suggested that panic mode could be implemented by

having the compiler writer supply a recovery routine for each error action in the parse

table. While that scheme could produce good recoveries, the amount of work required of

the compiler writer is staggering.

A panic mode algorithm should not be too slow. If an error recovery system

includes a good local recovery algorithm, the speed of its panic mode algorithm should

not be critical. A study of the Ripley-Druseikis sample of erroneous programs suggests

50

that a good local recovery algorithm should be able to handle at least 80% of the errors

that are detected. Therefore, only about one error is five will cause the panic mode

algorithm to be invoked. Nonetheless, the panic mode algorithm must not be so slow

that when it is invoked, it dominates the total compile time.

7.2 Some Earlier Panic Mode Algorithms

7 .2.1 Aho and Ullman's algorithm

Aho and Ullman [AU77] give a simple algorithm for implementing panic mode for LL

parsers. The compiler writer supplies the algorithm with a list of synchronizing tokens.

When the panic mode algorithm is invoked, it skips over the input until it finds a

synchronizing token. It then tests if that token can follow the symbol at the top of the

parse stack. If so, normal parsing is resumed. Otherwise, the algorithm pops the top

symbol off the stack and then loops back to the test. If the parse stack is emptied,

compilation is terminated.

The recoveries produced by Aho and Ullman's algorithm is fair at best. Its major

flaw is that the set of synchronizing tokens is the same for all contexts. For real

programming languages, there is no set of synchronizing tokens that is suitable for every

context. For example, consider the case of Pascal. If the token end is not a

synchronizing token, the algorithm will skip over instances of end. Skipping over

instances of end within the statement part of the program will almost always lead to

spurious errors. Suppose, on the other hand, the keyword end is always considered to be

a synchronizing token. Then if the programmer has erroneously included an instance of

the keyword end in the declaration part of a block, the panic mode algorithm might

recover by terminating the enclosing block.

7 .2.2 Pai and Kieburtz' algorithm

Pai and Kieburtz [PK80] present a panic mode algorithm that is essentially an

enhancement of the algorihm given by Aho and Ullman. Pai and Kieburtz call

synchronizing tokens fiducial symbols. Their algorithm uses a different test to decide if

the symbol currently at the top of the parse stack can be followed by a particular fiducial

symbol. The test succeeds if there is a string whose length is less than or equal to some

predefined bound such that the concatenation of the symbols in the parse stack, the

string, and the fiducial symbol form a correct prefix. If the test succeeds, the shortest

such string is inserted ahead of the fiducial symbol before normal parsing is resumed.

The Pai-Kieburtz algorithm should usually outperform the simpler algorithm

presented by Aho and Ullman. For example, when the simpler algorithm is used for

Pascal, it does not help to make keywords that start statements, such as for, while, and

if, fiducial symbols since, for normal Pascal grammars, they cannot directly follow any

symbol that can be pushed onto the parse stack. With the Pai-Kieburtz algorithm, those

symbols can profitably be made fiducial symbols. If the algorithm finds one of those

symbols while scanning through the input text, it can insert a semicolon ahead of the

symbol before resuming normal parsing. Therefor~, the algorithm will not have to skip

as much of the input text in some cases. However, like the Aho-Ullman algorithm, the

Pai-Kieburtz algorithm uses a single set of synchronizing tokens in all contexts. Hence,

the Pai-Kieburtz algorithm also suffers from the problem regarding the choice of

synchronizing tokens described at the end of Section 7.2.1. Thus, the Pai-Kieburtz

51

algorithm is better than the simpler algorithm presented by Aho and Ullman, but the

improvement is small.

7 .2.3 Hartmann's algorithm

Hartmann's compiler for Concurrent Pascal [Har77) contains an interesting panic mode

algorithm. Hartmann's algorithm is a refinement of the panic mode algorithm used by

Ammann [Amm81] in the Zurich implementation of Pascal. The Concurrent Pascal

compiler uses a recursive descent parser. Whenever a syntax error is detected, the

routine error is called. Error takes two parameters: the number of the error that was

detected, and a set of tokens. The tokens in that set are called the key tokens; they

serve the same function as synchronizing tokens. Error first prints an error message

corresponding to the error number. Next, it skips through the input text until it either

finds a key token or reaches the end of file. Normal parsing then resumes.

The set of key tokens passed to error depends on context. The parse routines for

each language construct, such as statements, declarations, and expressions, take a set of

tokens as a parameter. That set is to be the set of key tokens for that construct. For

example, when the routine for parsing if-statements calls the routine for parsing

expressions, the argument of the call will be the set of key tokens for the if-statement

plus the token then. The set of key tokens for a construct is the set of all tokens that

are permitted to follow that construct.

Hartmann's algorithm works remarkably well. Unlike the previous algorithms, it

recovers quickly from most errors and rarely creates situations in which spurious errors

will be detected. The method is not flawless, but its flaws are minor. There are some

cases where the Pai-Kieburtz algorithm outperforms Hartmann's algorithm. Those cases

arise because the Pai-Kieburtz algorithm is able to insert as well as delete when

recovering from an error. For example, if the keyword begin is missing from the start

of a block in a Pascal program, Hartmann's algorithm will consider the remaining input

text to be part of the declaration part of the program (until it reaches an occurrence of

begin). The Pai-Kieburtz algorithm will scan through the input text until it finds a

keyword that starts a statement. It will then recover by inserting the token begin ahead

of the keyword. Hartmann's algorithm is also less "automatic" than most other

algorithms. The compiler writer must write all the calls to error himself. He must also

maintain the correct values for the sets of key tokens.

7.2.4 The Yacc algorithm

The algorithm used in Yacc parsers [Joh78] is perhaps the best-known panic mode

algorithm for LR parsers. The Y ace algorithm makes use of a special token called the

error token. The error token is used to indicate those contexts from which parsing may

continue after an error. The error token may appear as part of the rhs of any rule.

When an error is detected, the panic mode algorithm prints a message and checks if the

topmost state of the parse stack permits a shift over the error token. If not, states are

popped off the parse stack until a state that does .permit a shift over the error token is

found. The parser then performs a shift over the error token and attempts to parse the

remaining input. However, if another error is detected before the parser shifts over three

input tokens, the panic mode algorithm is reinvoked, but the error message is suppressed.

The Y ace algorithm rates badly by most of the standards given in the previous

section. It not only fails to recover quickly, it frequently fails to recover at all. For

52

example, suppose that the grammar includes the productions

statement -+ if expression then statement

expressiOn -+ error

where error is the error token. Suppose that the input to the parser includes an if

statement in which the token then is misspelled. Further, suppose the parse detects an

error within the expression part of the if-statement that causes panic mode to be

invoked. Then the panic mode algorithm will pop the stack back to the state entered

when it shifted over the keyword if. The only token that can be shifted over after

shifting over error from that state is then. However, since the following instance of

then is misspelled, it will not be recognized. If there are no later instances of the token

then in the program, the algorithm will skip over the rest of the input text. The

algorithm also leads to many spurious errors. If the program mentioned in the previous

example contained another if-statement in a later procedure declaration, the panic mode

routine would skip to the instance of the token then in that procedure and resume

parsing. As a result, many spurious errors are likely to be detected. The standard error

message "syntax error" is not much aid to the user. Also, it is not easy for a compiler

writer to use the technique. Adding productions containing the error token to a

grammar will often cause it to cease to be LALR(l), forcing the compiler writer to

modify his grammar. However, the technique is reasonably efficient.

The panic mode algorithm used in the Pascal auditor is a modified version of the

algorithm used by Y ace. Much of the trouble with the Yacc algorithm stems from the

fact that parsing must continue starting from the rightmost state in the parse stack that

contains a shift over error. The modified algorithm tries to match the remaining input

with any state in the parse stack that contains a shift over error. The algorithm starts

by determining the set of synchronizing tokens. For each state in the parse stack that

contains a shift over error, the algorithm determines the set of symbols that the parser

could shift over after shifting over error. The set of synchronizing tokens is the union

of those sets. The algorithm skips through the remaining input text until it finds a

synchronizing token. It then pops the parse stack back to the rightmost state that can

shift over that token after shifting over error. Finally, it shifts over error and normal

parsing resumes. The modified algorithm does not include a call to a standard error

reporting routine. The action routines associated with the rules that permit shifts over

the error token must generate appropriate error messages.

The modified Y ace algorithm used by the Pascal auditor corrects many of the faults

of the original. The modified algorithm recovers from most errors and usually recovers

as quickly as possible. Spurious errors resulting from bad recoveries are rare. If the

compiler writer is careful, the error messages can be informative aids to the users.

However, in one respect the modified algorithm is worse than the original. The quality of

the recoveries performed by the modified algorithm depends in part on the exact form of

the grammar from which the parser is generated., The forms that lead to good results

from the panic mode algorithm are sometimes not ones that would normally be used.

One such example occurs in the grammar for the Pascal auditor shown in Appendix A.

To avoid some bad panic mode recoveries, the rules for declaration sections were factored

one level more than would otherwise have been necessary. Before the grammar was

changed, whenever a declaration appeared in the statement part of a block, the panic

mode algorithm would discard the portion of the parse stack above the state for the

declaration section of the block, issue a message stating that the text between the

I

53

declaration section and the erroneous declaration constituted a malformed declaration,

and then continue parsing as if the statement part of the block had not yet started.

7 .2.5 Burke and Fisher's algorithm

Burke and Fisher [BF82] proposed a panic mode technique that works for both LL and

LR parsers. They require the compiler writer to specify which tokens are the brackets of

the major bracketed structures. The opening brackets are called scope openers, and the

closing brackets are called scope closers. The term scope is used in a syntactic sense; it

does not refer to the scope of names. The panic mode technique recovers by discarding

portions of the parse stack and the remaining input, and by inserting scope closers.

\Vhen an error is detected, the panic mode algorithm tests if parsing could continue with

the remaining input if a portion of the parse stack were discarded and zero or more scope

closers were inserted ahead of the remaining text. The parse must be able to shift over a

predefined number of tokens {five in their implementation) for the test to succeed. The

portion of the stack to be discarded must all be to the right of the rightmost entry

inserted when the parser shifted over a scope opener. If the test succeeds, the stack and

the input are modified as indicated, and normal parsing resumes. Otherwise, the first

symbol in the remaining text is deleted and the algorithm begins again. The algorithm

goes on until either a recovery is found or the input is exhausted. \Vhen a recovery is

found, the algorithm tries to determine the type of syntactic construct expected in the

context where the error was detected. If it can identify the expected construct, the error

message it produces will name that construct. Otherwise, a general error message is

issued.

The Burke-Fisher technique works well in most cases. Because their algorithm does

not permit an arbitrary portion of the parse stack to be deleted, there are some errors

from which the algorithm cannot recover. Also, because of the long parse check, there is

a chance that the algorithm will ignore the best recovery because of a later unrelated

error. However, the types of errors that cause those problems are rare. A more common

problem of their method is that the text that is deteted often does not correspond to any

natural unit of the program. Therefore, it is sometimes difficult to determine what the

actual error was. Also, their recoveries can turn one type of statement into another. For

example, if there is an error in the expression on the right-hand side of an assignment,

their algorithm will sometimes delete all symbols in the statement other than the variable

on the left-hand side of the assignment, thus turning the assignment statement into a

parameterless procedure call. Their technique does have the advantage of being easy to

apply. A compiler writer need only supply the lists of scope openers and scope closers.

7 .2.6 Sippu and Soisalon-Soininen 's algorithm

The final algorithm considered here was proposed by Sippu and Soisalon-Soininen [SS83].

Their algorithm was implemented as part of an LALR{l) parser generator. The

algorithm recovers from an error by substituting a single nonterminal symbol for

portions of the parse stack and the remaining input text. The nonterminal symbol is

called a reduction goal. For example, if the algorithm finds that the states at the top of

the stack and the start of the remaining input seem to constitute a malformed statement,

those parts of the stack and the input are deleted, and the algorithm then performs a

shift over the nonterminal symbol for a statement.

Sippu and Soisalon-Soininen introduce the notion of feasible reduction goals. Each

nonterminal symbol such that there is a state in the parse stack that permits a shift over

54

that symbol is a potential reduction goal. Let q1 ... Qk qk+t· .. qn be the contents of the

parse stack, and let A be a nonterminal symbol such that qk includes a shift over A. Let

x be the string consisting of the accessing symbols of qk+t···Qn taken in sequence. A is a

feasible reduction goal if and only if x is the prefix of a string y such that A~ y. Only

feasible reduction goals are to be considered when selecting a recovery.

Sippu and Soisalon-Soininen did not test for feasible reduction goals in their

implementation. Instead, they use a test for a weaker condition they call weak

feasibility. A reduction goal A is weakly feasible if the accessing symbol of the following

state on the parse stack is the first symbol of some string that can be derived from A.

They do not explain why they chose to implement this weaker test. The reason may

have been speed since the algorithm they give for testing feasibility is not very efficient.

The panic mode algorithm described by Sippu and Soisalon-Soininen tries to find

the token in the remaining input that matches a feasible reduction in the parse stack

such that the sum of distance of the token from the start of the remaining input and the

distance of the reduction goal from the top of the parse stack is minimized. The

algorithm alternates between testing new tokens against the reduction goals near the top

of the parse stack and testing tokens near the start of the remaining input against

reduction goals further down in the parse stack. Once a match that allows parsing to

continue is found, the input preceding the token that was matched is discarded, and the

contents of the parse stack above the reduction goal that was matched are popped.

The algorithm by Sippu and Soisalon-Soininen should usually produce good

recoveries. However, the error messages produced by their implementation are apt to be

confusing. Each error message indicates which symbols were deleted and which

nonterminal was substituted for them. Grammars used to implement compilers are not

usually designed to be readable. Therefore, there is a good chance that an error message

will refer to a nonterminal symbol that will make no sense to a naive user.

7 .2.7 Properties that lead to good panic mode recoveries

A number of properties that affect the quality of panic mode recoveries have been

revealed by this survey. It has shown that

1. the choice of recoveries should be determined by the context in
which the error was detected,

2. recoveries should be allowed to insert tokens as well as delete them,

3. the compiler writer should be able to determine which symbols can

be involved in a recovery, and

4. the compiler writer should not be required to add special rules to his
grammar to support panic mode.

Most programming languages divide programs into sections that possess different

syntactic structures. As a result, those algorithms that did not take context into account

performed poorly for at least some contexts. Those recovery algorithms that performed

insertions were often able to recover sooner than those that did not. The recovery

algorithms that do not place restrictions on which symbols can be involved in recoveries

sometimes produce confusing recoveries. Finally, those algorithms that require the

grammars to be modified are harder to use than those that do not. Changes to a

grammar may change its grammar class, thus making it unacceptable to the parser

•

&

55

generator. Further, some constructs must be described using nonintuitive rules to make

the algorithm produce desirable recoveries.

Study of the differences between the panic mode algorithms used with top-down

parsers and those used with LR parsers reveals one reason why it is easier to produce

good panic mode algorithms for the top-down parsers. The parse stack of a top-down

parser contains all of the nonterminal symbols that the parser is trying to reduce. A

recovery by a panic mode algorithm consists, in part, of determining which of those

symbols should be completed. For LR parsers, the parse stack does not immediately

reveal which nonterminals are to be reduced; indeed, it is in general impossible to

determine that information. However, Sippu and Soisalon-Soininen's concept of feasible

reduction goals provides a close approximation to that information.

7.3 Panic Declarations

This section gives a compiler writer's view of a new technique for implementing panic

mode. The new technique is similar to that of Sippu and Soisalon-Soininen, but it gives

the compiler writer greater control over the selection of recoveries. It is not an

"automatic" algorithm in that the compiler writer must supply some additional

information to the parser generator. The extra information consists of directives called

panic declarations. The syntax for panic declarations given below should be considered

illustrative, not definitive.

The simplest form of a panic declaration is

%panic nonterminal string

where nonterminal is a nonterminal symbol and string is a string delimited by double

quotes. The nonterminal symbol must not be left recursive for reasons given later. The

declaration indicates that the specified nonterminal symbol is an acceptable reduction

goal for the panic mode algorithm. The string is a print name for the nonterminal

symbol to be used in error messages. The new panic mode algorithm would produce

essentially the same recoveries as those now produced by the Pascal auditor if the

following panic declarations were added to the Pascal grammar:

%panic pgmhead "program header"
%panic prchead "procedure header"
%panic fnchead "function header"
%panic parpack "parameter list"
%panic del "declaration"
%panic stmt "statement"
%panic expr "expression"

More specific panic declarations could be given, which would allow the panic mode

algorithm to produce more specific error messages. For example, panic declarations could

be given for each kind of statement in addition to the declaration for general statements.

Adding rules containing error tokens to achieve the same purpose for a Yacc-like panic

mode algorithm would probably introduce LALR(l) conflicts.

If every panic declaration is of the form described above, the parser generator will

compute the set S of tokens that can follow the listed nonterminal symbols and a finite

state machine M, which will be used to check for feasibility. The members of S are

56

fiducial symbols. When the panic mode algorithm is invoked, it will skip through the

input text until it finds an occurrence of a fiducial symbol. It then scans through the

parse stack, going from right to left, looking for a state that permits a shift over a

nonterminal symbol that is a named in a panic declaration. Each time it finds such a

state, it tests if any of the nonterminal symbols named in panic declarations that can be

shifted from that state are feasible reduction goals. If that test succeeds, the algorithm

then tests if the parser could shift over the lookahead symbol after shifting over any of

the feasible reduction goals. If a state passes both tests, the panic mode algorithm will

pop all states above that state, shift over one of the feasible reduction goals, issue an

error message (if the panic declaration for the goal symbol included a string), and resume

normal parsing. If no state passes the tests, the current fiducial symbol is discarded, and

the algorithm goes back to skipping over the text. If the input is exhausted before a

suitable recovery is found, the algorithm will issue a message stating that it was unable

to recover and compilation will be halted.

The new panic mode algorithm issues two forms of error messages. One form

indicates that the goal symbol is missing. That form is used if the recovery does not

involve discarding a portion of the parse stack or input text. That type of recovery is

equivalent to inserting the goal symbol at the error's detection point. The other form

states that the goal symbol is malformed. That form is used whenever the goal symbol

replaces one or more symbols in the parse stack or input text.

The productions that define the nonterminal symbols named in panic declarations

affect the efficiency and the quality of the recoveries performed by the new panic mode

algorithm. For example, suppose the symbol expr is the nonterminal symbol for

expressions, and suppose that expr is named in a panic declaration. In a normal

grammar for expressions, expr would appear on the rhs of the rule defining parenthesized

expressiOns. Now, consider the code fragment

i := (((((i;

In this admittedly unrealistic example, there would be six states on the parse stack that

would allow a shift over expr, one for each level of parenthesization. Therefore, the

panic mode algorithm must check if all six states allow shifts over feasible reduction

goals, and since they all do, it must determine which of them permit a shift over a

semicolon following a shift over a feasible reduction goal. Only the state corresponding

to the symbol ':=' will pass the latter test. The grammar for expressions could be

rewritten to avoid the need for a portion of that work. Another symbol, say expr 1, could

be used in the recursive definition of expressions. In particular, the rhs of the rule

defining parenthesized expressions would name expr 1 instead of expr. The symbol expr

named in the panic declaration could then be defined as

expr- expr1

Therefore, in the previous example, the only state in the parse stack that would allow a

shift over expr would be the state corresponding to the symbol ':='.

There must also be a mechanism for specifying semantic values. For example, the

panic declaration for expressions might be

%panic expr "expression"
{ $$ = make_ error_ node(); }

57

where make_ error_ node is a function that returns a special error value.

The panic mode scheme described so far possesses all of the desirable properties

listed in the previous section except for the ability to insert tokens. Allowing insertions

is sometimes necessary to make any recovery possible. Consider, for example, the

program

program p(output);
var a: integer;

begini := 1;
if i = 1 then writeln("ok")

end.

The apparent error is that the keyword begin and the identifier i have been run

together. The lexical analyzer will recognize the merged tokens as a single identifier.

The semicolon at the end of a declaration in Pascal is commonly made a part of the

syntax for a declaration (to avoid an LR(1) parsing conflict). Assume that the grammar

has been so defined in this case. The set of fiducial symbols for a declaration will be

const, type, var, procedure, function, begin, and perhaps label. Therefore, if the

local recovery algorithm is unable to find a repair, and the panic mode algorithm is not

allowed to insert the keyword begin, there is no way to recover from the error.

Allowing arbitrary insertions can lead to ridiculous recoveries. Therefore, the

compiler writer should be given strict control over the choice of insertions to be allowed

during a panic mode recovery. As a general rule, insertions should be allowed only

before keywords that can only appear in a single context. For example, in Pascal, it

would be reasonable to allow inserting a semicolon before every keyword that could begin

a statement, except possibly the keyword case which can also appear as part of a variant

record.

The compiler writer specifies which insertions are to be allowed by giving a list of

pairs of tokens. The first token of the pair is the token that can be inserted. The second

token is a fiducial symbol. Whenever the specified fiducial symbol is encountered during

a forward scan by the panic mode algorithm, for each instance of the nonterminal symbol

specified in the panic declaration that is found to be feasible, the panic mode algorithm

will test if it would be possible to shift over both tokens of the pair (in order). If so, the

first token is inserted and the indicated recovery is carried out. For example, to handle

the error in the previous example, the compiler writer could supply the panic declaration

%panic del "declaration"
<begin, if>

The panic mode algorithm would then be able to recover upon finding the token if by

inserting the keyword begin ahead of it.

Writing all those pairs can become tedious. As a shorthand, a list of symbols can be

defined with a list declaration. The form of a list declaration is

%list name token 1 .•. tokenn

The name of a token list must not be the same as the name of a token. If a list name

appears as part of a panic declaration, it is equivalent to all possible combinations of

pairs formed from the elements of the list. For example, the declarations

58

%list
%list

stdelim
stkey

else semicolon
begin case for goto if repeat while with

%panic stmt "statement"
< stdelim, stkey >

specify that the token else or the token semicolon can be inserted ahead of any of the

keywords that can appear at the start of a statement. The insertions are tested in their

order of appearance. Thus, in the previous example, the algorithm would try to insert

else before it tried to insert a semicolon. A complete set of panic declarations for Pascal

is shown in Figure 7.1.

%list
%list

stdelim
stkey

else semicolon
begin case for goto if repeat while with

%panic pgmhead "program header"

%panic prchead "procedure header"
{ new_scope(); }

%panic fnchead "function header"
{ new_scope(); }

%panic parpack "parameter list"

%panic del "declaration"
< begin, stkey >

%panic stmt "statement"
< stdelim, stkey >

%panic expr "expression"
<rpar, semicolon>
{ $$ = make_ error_ node(); }

Figure 7.1 Panic declarations for Pascal

One category of panic mode recoveries is handled in a special way. Consider the

code fragment

writeln(x, y, ((x * y);

where there are two unmatched left parentheses. Assume that the local recovery

algorithm cannot patch the error. If the panic declaration for expressions does not allow

any insertions, the likely panic mode recovery for this example would indicate that the

entire statement is malformed. A panic declaration such as

%panic expr "expression"
< rpar, semicolon >

59

where "rpar" is the name for a right parenthesis, would allow the panic mode algorithm

to recover by replacing the text starting from the second left parenthesis in the

statement and ending with the right parenthesis with the nonterminal symbol expr.

However, a naive implementation of the panic mode algorithm would produce a pair of

error messages: one stating that the text that was replaced constitutes a malformed

expression, and another indicating that a right parenthesis was inserted. However, the

programmer is unlikely to consider the right parenthesis to be a part of the expression;

rather, he will probably consider it to be the match of the left parenthesis following the

identifier writeln. The error message can be brought into line with the programmer's

likely intent at the cost of a few additional tests. If the accessing symbol of the state at

the top of the parse stack is the same as the token to be inserted, and if the first token of

the remaining input (before discarding any of the input) is the fiducial symbol of the

recovery, the insertion is not done. Instead, the top state is popped off the parse stack,

and its accessing symbol is attached to the front of the remaining input. The algorithm

then recovers normally.

The system described above allows only one token to be inserted as part of a panic

mode recovery. It is easy to find examples where inserting more than one symbol would

lead to a better recovery. However, it is harder to implement systems that allow more

than one token to be inserted.

7.4 The New Panie Mode Algorithm

The test for feasibility is the most complex aspect of the new panic mode scheme. Sippu

and Soisalon-Soininen [SS83] give an algorithm for testing feasibility in their article.

However, their algorithm seems to be needlessly complex and inefficient. An alternative

algorithm is given below. The algorithm is given for LALR(1) parsers, but could be

adapted for use with other classes of parsers.

The test for feasibility depends on the following facts. Let G = (V, ~. P, S) be an

LALR(1) grammar, and let M be the LALR(1) parser for G. Let q1 •.• qn be any sequence

of states that can be the contents of the parse stack during the parse of a string. Let

x = a 1 •.. an be the string consisting of the accessing symbols of the q/s taken in

sequence. The string x must be the prefix of a sentential form of G. Let STA be the

state transition automaton of M. Since x is the prefix of a sentential form, STA must be

able to shift over x without entering an error state. Let A be a nonterminal symbol such

that the parser can shift A while in state q;, 1 < i < n. Let GA = (V, ~. P, A), let

MA be the LR(O) parser for GA, and let STAA be the state transition automaton for

M A- Let z = ai+1 ..• an. Then z is the prefix of a string w such that A ~ w if and only

if STAA can shift over z without entering an error state. Therefore, testing if A is a

feasible reduction goal for q; is equivalent to testing if STAA can shift over z without

entering an error state.

A practical algorithm for testing feasibility can be based on state transition

automata. When a parser is constructed, the parser generator also builds the state

transition automata for every symbol named in a panic declaration. (Portions of the

STAs can obviously be shared.) For each state, the parser generator builds a list of all

nonterminal symbols named in panic declarations that the parser can shift while in that

60

state. Whenever the panic mode algorithm is invoked, it constructs the string of

accessing symbols of the states in the parse stack. To test if a nonterminal symbol A is a

feasible reduction goal starting from the i-th state in the parse stack, the STA for A is

run over the string of accessing symbols starting from the i+lst symbol. If the STA

does not enter an error state, A is a feasible reduction goal.

A simple change to the feasibility algorithm can improve its efficiency. Many states

of an LALR(1) parser have only one item in their kernel set. Suppose A - x . y is the

only kernel item of a state q. If q is the j-th element of the parse stack, the string

ai+l· .. an must be the prefix of a string z such that y ~ z. If an STA shifts over the j-th

symbol in the string of accessing symbols, it will be able to shift over the remainder of

the string. Thus, the test for feasibility automatically succeeds if the j-th symbol is

shifted, and so the test can be terminated at that point. Note that the only extra data

structure needed to implement this improvement is a Boolean vector that indicates for

each state whether the kernel item set of that state contained only one item. Further, if

a portion of the state transition automaton for a nonterminal symbol is accessed only

through transitions that correspond to states whose kernel item sets contain only one

item, that portion of the automaton will no longer be referenced. Therefore, space can

be saved by eliminating those parts of the automaton.

A more ambitious modification can reduce the order complexity of testing

feasibility. Suppose that the algorithm presented above is used to find every feasible

reduction goal for a given configuration of the parse stack. Assume that the parse stack

contains n states. There are a bounded number of reduction goals for each state. For

each reduction goal, the algorithm's worst-case time complexity is O(n). Therefore, the

worst-case complexity is O(n 2
). An alternative algorithm has a worst-case upper bound

of 0 (n). Let ST AA be the state transition automaton for the symbol A. Because STAA

is a finite automaton, it is possible to construct another finite automaton RP AA that

recognizes the reverse of the prefixes of the strings accepted by STAA. The set of

feasible reduction goals can be computed as follows. First, construct the string of

accessing symbols of the states in the parse stack. Then, for each symbol A named in a

panic declaration, run RP AA over the reverse of that string. Whenever RP AA enters a

final state, check if the state in the parse stack corresponding to the symbol just shifted

permits a shift over A. If so, A is a feasible reduction goal for that state. Since there are

a bounded num her of sym bois, and since each RP A requires at most 0 (n) time to scan

the reversed string, the worst-case complexity is O(n). The constant of proportionality

can be improved by merging the RPAs for the symbols named in panic declarations into

a single finite state machine. It is unclear whether this method of finding feasible

reduction goals or the previous method will prove better in practice.

Suppose that the panic mode algorithm has found a fiducial symbol for which there

are two or more feasible reduction goals. Each reduction goal is, of course, associated

with a position in the parse stack. If one goal is associated with a position to the right of

the positions associated with every other feasible reduction goal, that goal is selected as

the one to be used in the recovery. If there are two or more feasible reduction goals

associated with the rightmost position for which there are any feasible goals, there must

be some rule for choosing among them. For example, suppose the input to the parser

generator included the panic declarations

%panic
%panic
%panic
%panic

Then for the code fragment

stmt
call
assn
ifstmt

"statement"
"procedure-statement"
"assignment-statement"
"if-statement"

if i < 0 tehn 2;

61

both 8tmt and ifstmt will be feasible reduction goals. To provide the most information

to the user, the more specific of the two, namely, ifstmt should be selected. On the

other hand, for the code fragment

p!h, y);

stmt, call, and as8n are all feasible reduction goals. Since the statement could be either

a procedure statement, or an assignment statement, the more general stmt should be

chosen. There are examples where choosing the more specific goal is wrong even when it

is the only one of the more specific goals that is feasible. For e~ample, given the code

fragment

a(i) = 0;

the parser will shift over every token up to and including the right parenthesis.

Therefore, the only feasible reduction goals will be stmt and call. In this case, it is

clearly better to choose the more general construct stmt over the more specific one call.

This type of situation is rare for Pascal, but is more common for C [KR78]. ,
The examples above suggest the following rules for selecting among feasible

reduction goals. Let S be the set of nonterminal symbols named in panic declarations. A

partial order relation R can be defined over S. The relation xRy is true if and only if

x ~ yz for some string z. R is well-defined because left-recursive symbols cannot be

named in panic declarations. Let F be a set of reduction goals. For each pair of symbols

x, y in F, one symbol will be preferred over the other. If xRy and there is no other

symbol z in F such that xRz, then y is preferred over x. If xRy and there is at least one

symbol z in F such that xRz, then x is preferred over !I· If no relation is defined between

x and y, the symbol named earlier in the list of panic declarations submitted to the

parser generator is preferred. Therefore, any set of reduction goals can be sorted by

order of preference.

The new panic mode algorithm is given in Figure 7.2. The contents of the parse

stack are denoted by q1 ••• qn. The set S of fiducial symbols consists of all tokens that

can follow a nonterminal symbol named in a panic declaration plus all tokens explicitly

named as fiducial symbols in panic declarations. For each state q, the set G q consists of

every nonterminal symbol A named in a panic declaration such that there is a shift from

q over A. For each state q and each token t, Iq,t is the list of symbols which can be

inserted before t as part of a recovery in which q is the reduction goal. The function

feasible takes a nonterminal symbol, a string, and the index of a position in the parse

stack as arguments. It returns true if the symbol is a feasible reduction goal of the

indexed position and false otherwise. The function shiftable takes a sequence of states

and a string as arguments. It returns true if the parser would be able to shift over the

62

procedure PanicMode;
begin

first - true;
recovered - false;
for i - 1 to n do

ai - the accessing symbol of qi;
while not recovered and the input has not been exhausted do

begin
t - the next input token;
advance the input by one token;

if t E S then
begin

fori- n downto 1 do
begin

l- 0;
for x E Gq; do

if feasible(x, a 1 ..• an, i) then
begin

end;
m-0;

l-l + 1;
gl- x;

for j - 1 to l do
if shiftable(q1 .•• qn, git) then
begin

end;

m- m + 1;
hm- Uji

if m > 0 then
begin

A- preferred(h, qi);
name- the print name of A;

if first and i = n then
issue the message 'missing name'

else
issue the message 'malformed name';

pop all elements above qi offthe parse stack;

DoParse(A);
DoParse(t);
recovered - true;

end
else
begin

k -1;
while k < I Iq;,t I and not recovered do
begin

s - the k-th element of Iq;,t;

m-0;
for j - 1 to e. do

if shiftable(q1 .•• qn, gist) then

end

end
end

end
end;
first - false;

end;

begin

end;

m- m + 1;
hm- gj;

if m > 0 then
begin

A - preferred (h, q;);
name- the print name of A;
if first and i = n then

issue the message 'missing name'
else

issue the message 'malformed name';
if not first or i =f n - 1 or s =f an then

issue the message 'inserted s';

63

pop all elements above qi of! the parse stack;

DoParse(A);
DoParse(s);
DoParse(t);
recovered - true;

end;
k- k + 1;

if not recovered then
begin

end

issue a message stating that an unrecoverable error has been detected;

terminate compilation;

Figure 7.2 The new panic mode algorithm

string (possibly after some reductions) if the parser contained the sequence of states and

false otherwise. Shiftable is a generalization of the function described in Section 6.3.

The function preferred takes a sequence of nonterminal symbols and a state as

arguments. It returns the symbol of the sequence that is preferred over all the others

according to the preferencing scheme described above. The procedure DoParse takes a

symbol as its argument. If the symbol is a nonterminal symbol, it shifts over the symbol.

If the panic declaration for the symbol associates a semantic action with it, that action

will be executed. If the symbol is a terminal symbol, DoParse will parse until it shifts

over the symbol. Semantic actions associated with any reductions that are performed

will be executed ignoring the results of semantic checks.

The panic mode algorithm assumes that some technique for deferring reductions is

being used. It assumes that the parse is advanced up to the point at which the parser

shifts over the rightmost token preceding the detection point of the error. Therefore,

unless the first token in the program was the source of the error which caused the

64

algorithm to be invoked, the accessing symbol or the state at the top or the parse stack
will be a terminal symbol.

The new panic mode algorithm has been implemented by Michael C. Shebanow, a
computer science graduate student at Berkeley. Parsers using the new algorithm have
been constructed for C and Modula-2 [Wir83]. Good results were obtained for Modula-2
with little effort. The grammar used to generate the parser was a straightforward
adaptation of the grammar presented in [Wir83]. A handful of panic declarations were
added to the grammar. The resulting implementation of panic mode produced good
recoveries.

The results for C initially were not as good. The problem was that in C, semicolons
are used as statement terminators rather than as separators. Therefore, making the
nonterminal symbol for statements a reduction goal or a panic declaration caused all
symbols that could start a statement to be fiducial symbols. Because C is an expression
language, identifiers, constants, and unary operators can all appear at the start of a
statement. As a result, the panic mode algorithm often recovered too soon. The
problem could have been solved by rewriting the grammar so that semicolons were
treated as separators. However, Shebanow solved the problem by allowing the compiler
writer to declare that certain symbols should not be considered fiducial. In his
implementation, identifiers, constants and unary operators are declared nonfiducial.

Although the new algorithm has not been implemented for Pascal, it has been
hand-simulated for those errors in the Ripley-Druseikis suite that caused the Pascal
auditor to invoke the panic mode algorithm. The panic declarations shown in Figure 7.1
were used for the simulation. Even with only seven panic declarations, the new
algorithm performed at least as well as the Pascal auditor and Berkeley Pascal [GHJ79]
in all cases. The new algorithm also produced recoveries as good as or better than the
Burke-Fisher techniques in most cases. However, there were a few programs for which
the Burke-Fisher system produced better recoveries than the new algorithm. For
example, consider the code fragment

end; * test *
X:= 1
end.

The apparent error is that the programmer has used malformed comment brackets. The
Burke-Fisher algorithm recovers from this error at the end of the first line, while the new
algorithm does not recover until the end of the second line. The Burke-Fisher algorithm
was able to recover at the end of the first line because it treats all symbols as fiducial
symbols. The new algorithm did not recover at the end of the first line because, for the
given set of panic declarations, identifiers are not among the fiducial symbols. However,
because the Burke-Fisher system treats all symbols as fiducial symbols, it sometimes
recovers too quickly and so detects spurious errors.

7.5 Semantics and Panic Mode

Semantic information is of little use in panic mode recoveries. Each semantic check and
each semantic action is tied to a particular class of syntactic objects. In panic mode, no
effort is made to identify the syntactic components of the text being scanned. Therefore,
semantic information about the text is, for the most part, unavailable.

65

A panic mode recovery can cause parsing and semantic analysis to become out of

step. For example, if a panic mode recovery for a Pascal program causes a with

statement to be terminated, no further syntactic problems would be expected. However,

if declarations were entered into the symbol table during semantic analysis of the with

statement and those entries were not removed because an error led to a panic mode

recovery, spurious semantic errors might be detected later.

Many compilers do not perform semantic analysis until the entire program has been

parsed. In those compilers, syntactic error recovery cannot affect semantic analysis.

Further, many compilers do not perform semantic analysis at all if any serious syntactic

errors were detected. That approach to the problem is obviously incompatible with the

error recovery techniques developed in this work.

The problem of ensuring that semantic analysis does not get off track can be

partially solved by an automatic technique. The technique requires the symbol table to

be organized as in the limited history scheme described in Section 5.4. Recall that in

that scheme, the nesting level that was current at the time a state was pushed onto the

parse stack is recorded. Suppose that the panic mode algorithm presented in the

previous section is invoked and that it finds a recovery. Let qi be the state in the parse

stack that has been matched with a reduction goal. Let L be the nesting level recorded

for qi. If L is less than the current nesting level, all entries in the symbol table that were

entered at a nesting level greater than L should be removed and then the current nesting

level should be reset to L.

The technique just described is not always adequate. The syntactic constructs

derived from a single nonterminal symbol usually have no net effect on the nesting level.

The semantic actions executed while analyzing a construct may increase the nesting level

at some times and decrease it at others, but the net effect is to leave it unchanged. For

example, in Pascal, a with-statement will increase the nesting level once for each record

variable named in its with-list, but at the end of the statement, the nesting level will be

the same as it was before the with-statement was encountered. The automatic technique

is adequate for panic mode recoveries where the chosen reduction goal has that property.

If a reduction goal does not have that property, the technique will sometimes produce

bad results. For example, if the reduction goal of a panic mode recovery is a procedure

header, the nesting level should be left one greater than the nesting level recorded for the

previous state in the parse stack.

There are no obvious methods for handling those cases where the automatic

technique for adjusting the status of semantic analysis proves inadequate. Unless such

methods are found, the compiler writer will be forced to provide special codes to handle

those cases. Because of the nature of the problem, those codes will be dependent on data

structures created by the parser and the error handling routines. Since one of the major

advantages of using an automatic parser generator is that the user need not understand

the data structures it produces, that solution is unsatisfactory.

One final note: panic mode should never be invoked as a result of a semantic error.

Panic mode is a last resort method for getting the parser back on track after a syntax

error. Since semantic errors are detected as a result of reductions, the parser must be in

a legal configuration for a semantic error to be detected. Therefore, there is no reason to

invoke panic mode for semantic errors.

8

An Implementation and Empirical Results

The Pascal auditor has been used as a testbed for the error recovery techniques described

in previous chapters. Many of the techniques described earlier have been implemented

and evaluated as a part of the Pascal auditor. The Pascal auditor also provides empirical

evidence of the power and the practicality of the error recovery techniques presented

herein. The recoveries produced by the final version of the Pascal auditor have been

compared with those produced by Berkeley Pascal [GHJ79], the Burke-Fisher system

[BF82], and a version of the Pascal auditor that ignores semantic information during

error recovery.

8.1 The Bison Parser Generator

The parser for the Pascal auditor was produced using a new parser generator named

Bison. Bison was written to provide support for semantics-directed error recovery.

Originally, an attempt was made to adapt the Yacc [Joh78] parser generator. Yacc

proved hard to modify because the codes for the various functions it performs are closely

intertwined. Therefore, that effort was abandoned, and Bison was written.

Bison is an LALR(l) parser generator. It is based on the DeRemer-Pennella

algorithm for computing LALR(l) lookahead sets [DP82]. It is more modular than Yacc,

making it easier to modify. The major functional differences between Yacc and Bison are

1. Bison directly supports the division between semantic guards and

semantic actions discussed in Section 4.3.

2. Bison generates the additional tables needed for the stack restoration

scheme discussed in Section 6.4.

3. The parse tables are organized differently to permit faster access.

The tables are slightly larger than those produced by Yacc, but the

resulting parsers are faster.

4. A Bison parser maintains an additional stack, the location stack, to

keep track of information needed for reporting errors and semantic

data used in recoveries. '

Bison is faster than Yacc because it uses more efficient algorithms for generating the

states of the LR(O) automata and for computing the lookahead sets.

The general format of a rule in Bison is

lhs: symbol 1 ••• symboln
[%guard expression]
[action]

66

67

where lhs is a nonterminal symbol, symbol 11 ••• ,symboln, n > 0, are symbols, expression

is a C expression, and action is a C compound statement. The square brackets are not

part of the rule; they indicate that the enclosed text is optional. The rule causes the

production lhs - symbo/1 ••• symboln to be part of the grammar accepted by Bison.

The semantic attributes of the symbols can be referenced in the guard and action clauses

using the $-conventions of Yacc; i.e., the attribute of lhs is denoted by "$$" and the

attribute of symbolic is denoted by "$k". Information in the location stack about

symbolic is denoted by "@k".

The guard expression for a rule checks for semantic errors. The parser initially sets

the global variables yyerror and yycost to zero. If an error is detected, the guard must

set yycost to a positive value. The compiler writer selects the value based on his

estimation of the severity of the error (more severe errors should be assigned higher

costs). If the error is one that the compiler writer thinks might be fixed by a syntactic

repair, he should have the guard set yyerror to one. The guard expression should have

no side effects other than setting the values of yyerror and yycost.

The value of a guard expression is always ignored. Therefore, guard expressions

could have been allowed to be statements as well as just expressions. In some cases,

restricting guard expressions to be expressions requires a function call to be used where a

simple statement would suffice.

The following rule is taken from the grammar for the Pascal auditor.

arrval : name
%guard

chkarrname($1)
{ $$ = mkarrname($1, &(@1));}

The symbol arrval is the name of the nonterminal for array variables. The symbol name

is a nonterminal symbol that denotes a defined identifier. Another rule reduces an

identifier to a name and checks if it is defined. If the identifier is defined but is not

defined to be an array variable, chkarrname will set yyerror to 1· and yycost to either 5

if the identifier is a subprogram name, or 20 otherwise. The function mkarrname

constructs a semantic attribute containing the information about the array name that

might be needed by later semantic routines. The reference to the location stack entry for

the name is used when generating error messages.

8.2 The Parser

A Bison parser automatically performs many of the functions that are needed to support

error recovery. An error message should report the location at which the error appears

to have occurred. Therefore, it is necessary to keep track of the locations within the

input text corresponding to the states in the parse stack. Bison parsers automatically

maintain this information in the location stack. After a recovery, the next symbols to be

read will be stored in a buffer. Whenever a Bison parser needs another symbol, it first

checks if the buffer is empty. If the buffer is not empty, the next symbol will be taken

from the buffer; otherwise, the lexical analyzer will be called. Bison parsers perform

LR(2) error checking as described in Section 6.4. Because Bison parsers support these

functions, the compiler writer is freed from having to supply codes for them.

68

A Bison parser maintains three separate stacks: a parse stack, a semantic stack,

and a location stack. The parse stack contains the states that represent the left context

of the parser's current state. The semantic stack contains the semantic values of the

symbols that the parser has shifted. The location stack contains information used by the

error recovery system.

The location stack maintains information about the locations of the symbols

represented in the parse stack. It also contains the timestamp and nesting level

information needed to reverse the effects of symbol table operations. Each location stack

entry is a record of the form

record

end

timestamp:
nesting_ level:
first_ line:
first_ column:
last_ line:
last_ column:
text:

integer;
integer;
integer;
integer;
integer;
integer;
string;

where string is the name of a type used to represent arbitrary length strings. The

timestamp and nesting_ level fields are set to the current values of the global timeclock

and nesting level counter when the parser shifts over the symbol corresponding to the

location table entry. For terminal symbols, the remaining fields must be set by the

lexical analyzer. For nonterminal symbols, the parser will automatically set the

remaining fields.

The lexical analyzer must set the location and text fields for each token. The

first_line field must be the number of the line in which the token begins, the

first_ column field must be the number of the column in which tne first character of the

token appears, the last_line field must be the number of the line in which the token

ends, and the last_column field must be the number of the column in which the last

character of the token appears. The text field must be a copy of the string representing

the token in the input text. The string stored in the text field is used as the token's

name in error messages.

The parser sets the location and text fields for each entry corresponding to a

nonterminal symbol at the time it does the reduction that produces that symbol.

Normally, the first_ line and first_ column fields are set to the values of the

corresponding fields of the first symbol in the handle of the reduction, and the last_ line

and last_ column fields are set to the values of the corresponding fields of the last symbol

in the handle. Reductions according to }.-rules constitute a special case. For a symbol

produced by a }.-rule, the first_ line and first_ column fields are set to the values of the

corresponding fields of the lookahead token, and the last_line and last_ column fields are

set to the values of the corresponding fields of the entry at the top of the location stack.

The text field of a location stack entry that is associated with a nonterminal symbol is

set to the null string.

The table organization by Bison parsers is based on the table packing technique

proposed by Ziegler and described by Tarjan and Yao in [TY78]. The principal

advantage of the table format is that the resulting parsers are fast. Parsing speed is

important for error recovery because a piece of text may have to be reparsed several

,

69

times to test potential repairs. However, the parse tables are also small. The parse

tables for the Pascal auditor are 4,764 bytes long. The tables used for stack restoration

are another 3,326 bytes, for a total table size of 8,090 bytes. By comparison, the parse

tables for Berkeley Pascal are 12,816 bytes long. Much of that space is wasted, since four

bytes are used to hold integer values that would fit in two byte integers. If two byte

integers had been used, the tables for Berkeley Pascal would occupy 6,408 bytes. If the

stack restoration scheme used by the Pascal auditor were replaced by LR(l) pretesting,

the tables for the Pascal auditor would be smaller than those for Berkeley Pascal even if

Berkeley Pascal's tables had been encoded as two byte integers.

8.3 The Pascal Auditor's Error Recovery System

This section and the two following sections describe the error recovery system used in the

final version of the Pascal auditor. They tell how the various components presented in

earlier chapters are organized within the system. The local recovery algorithm is

described in detail so that the reader may judge which of the improvements claimed for

the system are due to the new techniques used in the error recovery system, and which

are artifacts of the implementation.

The Pascal auditor invokes its error recovery system whenever the parser detects a

syntax error and whenever a semantic guard sets the global variable yyerror to one

during normal compilation. If the error is a syntax error, the parser backs up the

configuration of the parse stack before invoking the error recovery system. The token

that caused the error to be detected will then be the second syPlbol in the lookahead

buffer. If the error is a semantic error, no backup is done.

The error recovery system begins by testing if the lookahead buffer is full. If it is

not, the algorithm will repeatedly call the lexical analyzer to fill the buffer. The system

then checks if the error was a syntax error or a semantic error. The variable yyerror will

be zero if the error was detected by the parser, and one if it was detected by a semantic

guard. A global flag, named semantic_ error, is set to one for semantic errors and zero

for syntax errors. The flag is needed because yyerror will be reset by semantic guards

while testing potential repairs. The local recovery algorithm is then invoked. If the local

recovery algorithm produces a repair, the error 'recovery system returns and normal

parsing resumes. If no repair is found and the error was a semantic error, the error

recovery system performs the semantic action associated with the rule that caused the

error to be detected; otherwise, panic mode is invoked.

The local recovery algorithm used by the Pascal auditor is based on the Graham

Haley-Joy algorithm [GHJ79]. There are two major differences between the Pascal

auditor's local recovery algorithm and the Graham-Haley-Joy algorithm. The algorithm

used by the Pascal auditor uses general static semantic data to direct the choice of a

repair. The Graham-Haley-Joy algorithm uses some semantic data, but that data is

represented syntactically (see Chapter 3). Also, the potential repairs considered by the

two algorithms are different.

The local recovery algorithm starts by doing a forward move over the text in the

lookahead buffer. If the error was detected semantically, the initial forward move

establishes the cost of making no change to the input text. The semantic cost of any

potential repair is the sum of the values assigned to yycost. The local recovery algorithm

will not consider a repair whose semantic cost equals or exceeds that initial cost. The

algorithm then computes the LR(l) lookahead set for the top state of the parse stack

70

using the function Shiftable (see Section 6.3). If the first symbol in the error lookahead

buffer is a member of that lookahead set, the LR(l) lookahead set for the configuration

reached after shifting that token is also computed. The lookahead sets are used to

quickly eliminate some infeasible repairs from consideration. The local repair algorithm

then applies its repertoire of potential repairs. Syntactic and semantic costs are

computed for each repair found to be feasible. If a repair costs less than any previous

repair that was found to be feasible, it is logged as the current repair of choice. Finally,

if any repairs were found to be feasible, the least costly of those repairs is applied.

Testing a potential repair is a two step process. Repairs are implemented by

modifying the contents of the lookahead buffer. A potential repair is tested by making a

copy of the lookahead buffer as it would appear after applying the repair, and then

parsing over that copy. That parse is the forward move. However, performing semantic

analysis while doing a forward move is time consuming. Therefore, a preliminary

forward move that consists of parsing without semantic analysis is done. If the

preliminary forward move determines that the syntactic cost of the repair is too great to

allow it to be chosen as the repair to be applied, the forward move with semantics is not

done. This use of parsing to eliminate infeasible repairs is the opposite of the situation in

the Berkeley Pascal, which uses semantic information to reduce the time spent parsing.

Since the semantic information that is used by the Berkeley Pascal is encoded in the

nonterminal symbols, there is little cost associated with the semantic checks. The Pascal

auditor's use of semantic routines is more time consuming. However, because of its

superior encoding of the parse tables, the bare bones parsing algorithm used for the

preliminary parse runs from 5 to 8 times faster than the parser used by Berkeley Pascal.

Empirical results show that the preliminary parse significantly improves the speed of the

local recovery algorithm.

The cost of a repair has three components. The dominant component is the

distance parsed before a new syntax error is detected. If fewer than three tokens can be

shifted, the repair is automatically rejected. The repair will also be rejected if the

forward move does not shift at least as far as the best repair found so far. The other

components of the cost are the semantic cost and the syntactic cost. The semantic cost

of a repair is the sum of the values of yycost after every evaluation of a semantic guard

done during the forward move. The Pascal auditor favors repairs whose semantic cost is

zero over those with positive semantic costs. Recall that a positive semantic cost means

that at least one semantic error has been found during the forward move. Since most

errors are either purely syntactic or purely semantic, a syntactic repair whose semantic

cost is positive is probably undesirable. If a repair has a positive semantic cost and it is

not otherwise eliminated from consideration, its total cost for purposes of comparison

with other repairs is formed by adding its syntactic and semantic costs.

The syntactic cost of a repair is computed using cost functions. There are three

cost functions: !cost, Dcost, and Rcost. !cost takes a symbol as its argument and

returns the cost of inserting that symbol. Dcost computes the cost of deleting a symbol.

It takes two symbols as arguments. The first symbol is the symbol to be deleted, and the

second is the symbol that precedes it. If the two arguments represent the same symbol

and the symbol is one without associated semantics, the cost returned is one. This

special case is included as a heuristic. The function Rcost returns the cost of replacing

one symbol by another. Rcost takes three arguments. The second argument is the

symbol to be replaced, and the first is the symbol replacing it. The third argument is

used only when the symbol to be replaced is an identifier. It is the character string that

forms the identifier. A spelling matching algorithm is used to decide if the string is close

to the spelling of a keyword. If it is, the cost of the replacement is reduced to one.

71

There is a special cost called infinity. If the syntactic cost of a repair is infinite,

that repair is never attempted. The only deletion for which infinity is returned is

deletion of an end-of-file symbol. Some insertions can never be chosen as the final repair.

For example, in Pascal, the symbol '=' is permitted in every context in which any

relational operator other than 'in' is permitted. It is natural to prefer '=' over the other

relational operators when testing insertions. Hence, there is no reason even to try

inserting the other five relational operators. Therefore, to save time, the insertion costs

of the other relational operators are infinity. The infinite cost has its greatest value for

replacements. Most replacements should not be allowed under any circumstances. For

example, it is unlikely anyone would ever accidently type the keyword procedure where

he meant to type the symbol ':='. The current version of the Pascal auditor attempts

too many unreasonable replacements, which wastes time and occasionally results in an

unreasonable recovery.

Some repairs are combinations of simpler repairs. For example, the Pascal auditor

sometimes tries deleting two consecutive tokens. In such cases, the syntactic cost of the

repair is the sum of the costs of the simpler repairs.

Certain common errors are handled by error productions. The grammar for the

Pascal auditor has been extended to allow declarations to appea~ in any order. Other

error productions permit general type specifiers to appear wherever a type identifier or

ordinal type can appear. Also, the grammar has been extended to allow an expression to

appear in most contexts where a constant can appear. An exception was made in the

case of the bounds of subranges because the error production for that case caused an

LR(l) conflict. The semantic routines for error productions produce the error messages

for the errors handled by those productions.

8.4 The Repairs

The Pascal auditor considers four types of repairs: deletions, insertions, replacements,

and bracket repairs. Deletion consists of removing one or two tokens from the error

lookahead buffer. The Pascal auditor first tries deleting the second symbol in the

lookahead buffer and then tries deleting the first symbol in the buffer. If the error was

detected semantically no further deletions are attempted. Otherwise, the Pascal auditor

tries deleting the second and third tokens, and finally, it tries deleting the first and

second tokens. The deletions are tested in this order because the Pascal auditor does

LR(2) error checking. With LR(2) error checking, it is more likely that the second token

in the buffer should be deleted than the first. The two token deletions are not tried for

semantic errors because they are too likely to lead to inaccurate repairs. Consider the

statement

X:= 1

where x has been declared to be a parameterless procedure. The semantic guard for the

destination of an assignment causes the error recovery algorithm to be invoked. If the

syntactic repair algorithm tries deleting the symbols ':=' and '1' simultaneously, it will

find that the resulting program is both syntactically and semantically correct. It will,

therefore, choose to apply that repair unless the costs of the deletions are set

prohibitively high. However, in this case, it is better to leave the original text unchanged

and report the semantic error.

72

Double deletions have proven to be important repairs for Pascal. It is a common

error to include an empty pair of parentheses in subprogram headers and calls. Without

the ability to delete both parentheses, the recovery algorithm would be forced to resort

to panic mode. If the error is in a procedure or function header, applying panic mode

could lead to many spurious errors later.

The insertions considered by the Pascal auditor consist of inserting single tokens

into the lookahead buffer. The tokens that it will try inserting are the elements of the

LR(l) lookahead sets computed at the start of the syntactic repair algorithm (see the

previous section). It first tries inserting tokens after the first token in the lookahead

buffer. Next, it tries inserting tokens at the start of the lookahead buffer.

The replacements consist of substituting a token for one of the tokens in the

lookahead buffer. Replacements for the first and second symbols in the buffer are

considered. The LR(1) lookahead sets are used to restrict the replacements that are

attempted to those that might be feasible.

Bracket repair is a new type of repair. Consider the statement

a(i) := k;

where a is an array of integers, and i and j are integer variables. The likely error is that

parentheses have been used in place of square brackets. The Burke-Fisher system

responds to this error by replacing ':=' with ';', i.e., it converts the assignment

statement into a pair of procedure statements. This repair is the natural choice for the

Burke-Fisher algorithm because it makes no use of semantic data when selecting

syntactic repairs and therefore is unable to take advantage of the fact that neither a nor

j is the name of a procedure. However, Berkeley Pascal, which does know that a is an

array variable and j is a variable, does little better. It reports that a procedure name

was expected where a appears and that the statement is malformed. The reason

Berkeley Pascal reports that it expects a procedure name is that, in Berkeley Pascal, it

costs less to replace an array name with a procedure name than it does to replace a left

parenthesis with a left square bracket. Moreover, even if the costs were revised, the

results for this example would remain the same. When Berkeley Pascal tries replacing

the left parenthesis with a left square bracket, it rejects the repair because of the error it

detects upon reaching the right parenthesis.

The best repair for a bracketing error often involves a pair of insertions or

replacements. In the previous example, the left parenthesis must be replaced by a left

square bracket, and the right parenthesis by a right square bracket. The bracket repairs

done by the Pascal auditor consist of inserting a left bracket or replacing a symbol by a

left bracket near the detection point of an error. Then, if a new syntactic error is

detected during the forward move, the corresponding right bracket is used in insertions

and replacements near the point of the new error.

The left parenthesis ('('), the right parenthesis (')'), the left square bracket ('['), and

the right square bracket (']') are the only symbols treated as brackets by the Pascal

auditor. Other pairs, such as begin - end and repeat - until, are also brackets in the

usual grammatical sense. However, users are far less likely to make mistakes with those

brackets. For example, there is little chance of accidentally substituting repeat - until

for begin - end.

The algorithm for bracket repairs is more complex than those for the other repairs.

In fact, the code for implementing bracket repairs is longer then the codes for the other

repairs combined. The algorithm works as follows. For each left bracket, four repairs

73

are considered. The bracket can be inserted before the first token in the lookahead

buffer, it can be inserted after that token, it can replace the first token in the buffer, or it

can replace the second token. For each of those repairs, the follow sets are consulted to

decide if the repair might be viable. If a repair is viable, a copy of the modified buffer is

parsed to check for subsequent syntax errors. If no such error is found, the bracket

repair algorithm does not give any further consideration to the repair, since it will

already have been considered as a possible insertion or replacement. If a new syntax

error is found, the copy of the lookahead buffer is further modified in an attempt to

repair the second error. Attempts will be made to insert the corresponding right bracket

immediately before the detection point of the second error, and also before the symbol

preceding the detection point. Attempts will also be made to replace the symbols on

either side of the detection point with the right bracket. Thus, as many as sixteen

repairs will be considered for each bracket pair. As a heuristic, if a left bracket was

inserted, the cost of inserting the right bracket is reduced, and if the left bracket

replaced another token, the cost of replacing another token with the right bracket is

reduced. '

The algorithm described does not always find the best repair for a bracketing error.

Indeed, it does not always find a repair at all. Sometimes, the second error will not be

detected until after the point where it actually occurred. Consider the statement

a[i] := a(i + a[J1

where a is an array of reals, and i and i are integers. The error here is two-fold. First,

the left parenthesis should have been a left square bracket. Second, there should be a

right square bracket between the second instance of i and the '+'. However, when the

bracket repair algorithm tries replacing the left parenthesis with a left square bracket, it

does not find a subsequent syntax error until it reaches the semicolon. Therefore, the

second repair will consist of inserting a right square bracket immediately before the

semicolon. This repair will, of course, lead to a semantic error since real expressions

cannot be used as subscripts. An earlier version of the bracket repair algorithm avoided

this problem. That version did not limit its attempts to fix the second error to changes

made in the immediate context of the detection point of the second error. Instead, it

tried replacements and insertions in every position between the first repair and the

second error's detection point. Errors such as the one shown above posed no problem for

that version of the bracket repair algorithm. However, it was dropped when it was

discovered that the error recovery algorithm was spending about two-thirds of its time

testing bracket repairs. The current algorithm spends only about one-tenth of its time

testing bracket repairs and yet produces the same results for all bracketing errors that

occur in the Ripley-Druseikis sample.

8.5 Reporting Errors

The output of the Pascal auditor is a listing of the input program with interspersed error

messages. The nature of an error message depends on how the message was generated.

Error messages produced by the local recovery algorithm indicate the changes made to

the input text by the algorithm. The compiler writer must make provisions for

producing error messages for semantic errors, error productions, and panic mode

recoveries. Information matching locations in the input text with symbols involved in

error messages can be obtained from the location stack. For panic mode recoveries, the

74

location stack entry for the error token is set so that its starting location is the start of

the text skipped over during the recovery, and its ending location is the end of that text.

The error messages produced by the Pascal auditor may be associated with either a

single point in the program text or a contiguous region of the program. A error message

associated with a single point in the program text is indicated by a caret pointing to that

location. An error message associated with a region of the program is marked by angled

brackets indicating the endpoints of the region with the space between the brackets filled

by hyphens. If the region associated with an error message overlaps the location

associated with another error message, the location markers associated with the inner

error are given precedence. For example, suppose a Pascal program contains the

statement

X := [!f + 2]

where x and y are real variables. Then the listing the Pascal auditor produces will

include the following error report:

:z: : = [y '+ 2]
<-----<---»

*** 3: e - incompatible assignment
*** 9: e - set member type is not ordinal

Every error message generated by the Pascal auditor is written to a temporary file

called the error file. After analysis of a program has been completed, the error file is

sorted so that the error messages appear in the order they are to appear in the listing.

The error file and the input file are then rewound, and the listing is produced from them.

8.6 Space and Time

The Pascal auditor was written in C [KR78] on a Digital Equipment Corporation

V AX-11/780t running Berkeley UNIX*. It accepts full ANSI Pascal [ANS83]. The

grammar used in the implementation of the Pascal auditor is shown in Appendix A. The

source code for the Pascal auditor is 18,567 lines long. The sizes of its major components

are as follows:

lexical analyzer
grammar
error handler
semantic routines

1205 lines
1127 lines
3697 lines

11572 lines

6%
6%

20%
62%

The remammg 6% of the source code consists of header files, the main routine, and

utility routines. The compiled code (including tables) is about 120,000 bytes long.

For error-free programs, the Pascal auditor is about as fast as Berkeley Pascal. The

Pascal auditor analyzes a correct program in about two-thirds the time it takes the

t VAX is a registered trademark or Digital Equipment Corporation.

t UNIX is a registered trademark or Bell Laboratories.

....

75

Berkeley Pascal interpreter to analyze and produce interpretive code for the same

program. Using the profiler gprof [GKM83], it was ascertained that, for error-free

programs, the Berkeley Pascal interpreter spends about two-thirds of its time analyzing

the programs; the rest of the time is spent in code generation. The profiler further

showed that relative times the two systems spend in the various phases of analysis are

quite different. Berkeley Pascal spends a higher percentage of its time parsing and

performing lexical analysis. The Pascal auditor spends most of its time performing

semantic analysis. One reason the Pascal auditer takes longer to perform semantic

analysis is that the semantic routines must obey the restrictions described in Sections 5.3

and 5.4. It is sometimes necessary to use less efficient codes for semantic analysis than

could be used in the absence of those restrictions. However, the major reason semantic

analysis takes longer appears to be the division of semantic routines into guards and

actions that was discussed in Section 4.3. If the alternative scheme for implementing

semantic routines that was described at the end of that section had been used, the time

required to analyze correct programs would have been significantly less for the Pascal

auditor than for Berkeley Pascal.

It is hard to compare the speeds of error recovery systems. For a given program,

the systems might choose different repairs for an error that occurs early in the program,

which may affect further analysis of the program. To compare the speeds of the Pascal

auditor and Berkeley Pascal, a special set of erroneous programs was developed. Those

programs had the property that the two systems repaired each error in exactly the same

way. In addition, a corrected version of each program was written to provide a control

against which the extra time spent performing error recovery could be measured.

Timings show that the Pascal auditor's error recovery algorithm is significantly

slower than Berkeley Pascal's. The timings were done using the UNIX time command.

The time command produces two times for a program: the user time and the system

time. User time is the time spent in the user process, while system time is the time spent

performing system commands. The timings for the Pascal auditor show that it spends

about 0.09 seconds of user time for each error detected. Berkeley Pascal, on the other

hand, spends only about 0.03 seconds of user time for each error. The system time spent

by two algorithms is approximately equal; both spend about 0.02 seconds of system time

for each error. Thus, the Pascal auditor takes more than twice as long to recover from

an error as Berkeley Pascal.

The Pascal auditor is slower than Berkeley Pascal for many reasons. One reason is

that the Pascal auditor's error recovery codes are not as efficient as they could be.

Efficiency was not a primary consideration in the design of the Pascal auditor. (Neither

was it for Berkeley Pascal.) The original version of the Pascal auditor required about six

times longer to recover from an error than does the current version. Many

improvements have been made to that original version; however, other changes that

might have further improved its efficiency were not implemented because they involved

major revisions. Another reason the Pascal auditor is slower than Berkeley Pascal is that

it considers more repairs for each error. The use of semantic information also

contributes to the time spent in error recovery. For each repair found to be syntactically

feasible, the repair algorithm performs a forward move that includes semantic evaluation.

The time spent creating the appropriate environment for that forward move, doing the

semantic actions, and then restoring the previous semantic environment takes much

longer than a purely syntactic forward move.

The timings produced one surprise. The correlation between the speed of the error

recovery algorithm and the bound on the number of tokens considered during a forward

move was found to be less than expected. In the original version of the Pascal auditor,

76

the bound on forward moves was 15 tokens. Reducing that bound to seven tokens

reduced the time spent for each recovery by only about 10%. Not surprisingly, when the

bound was reduced to seven, the quality of the recoveries produced by the error recovery

algorithm suffered. However, the quality of the recoveries produced when the bound was

15 tokens was not as good as when the bound was set in the range from 9 to 12 tokens.

When the bound was 15 tokens, there were instances where errors that occurred later in

the program adversely affected the costs assigned to the repairs being tested. In the

current version of the Pascal auditor, the bound on the number of tokens used in a

forward move is 12 tokens.

The timings described above are biased in favor of Berkeley Pascal. Earlier timings

showed that speed of Berkeley Pascal was less than double that of the Pascal auditor.

Unlike the sample used in the timings described above, the sample used in those earlier

timings contained programs for which different repairs were produced by the two

algorithms. The Pascal auditor found viable repairs in many cases where Berkeley Pascal

did not. When Berkeley Pascal or the Pascal auditor fails to find a repair for an error, it

takes longer to recovery from the error because more potential repairs are tested. Also,

the error recovery system must spend time executing its panic mode algorithm. Thus,

the fact that the Pascal auditor usually tests more potential repairs than Berkeley Pascal

is partially compensated for by the fact that it is more likely to find a repair.

1 var a. b: array [1 .. 51 .. 10] of integer;

*** 2: e - Missing Program Header

*** 24: e - inserted ' J .
2 i. j . k. 1: integer;
3 begin
4 3: i + j > k + 1 * 4 then go 1 else k is 2;

*** 3: e - label 3 is undeclared

*** 5: e - inserted 'if'

*** 29: e - replaced 'go' with 'goto'

*** 32: e - label 1 is undeclared

*** 41: e - replaced 'is' with '·='
5 a 1.2 := b [3 * (i+4. j*/k]

*** 4: e - inserted ' [J

*** 8: e - inserted J] J

*** 25: e - inserted ') J before J '
*** 28: e - deleted J /'

*** 31: e - inserted J. J

6 if i=1 then then goto 3;

*** 15: e - deleted 'then'
7 2: end.

*** 1: e- label 2 is undeclared

Figure 8.1 The Graham-Rhodes example

77

8.7 Examples of Use

This section presents two examples of recoveries performed by the Pascal auditor. Other

examples may be found in Appendices B, C, and D. The examples presented here were

chosen because they are well-known examples from the literature.

The example shown in Figure 8.1 is taken from the paper by Graham and Rhodes

[GR75]. Variants of this example appear in [PD78], [GHJ79], and [BF82]. The text

shown in Figure 8.1 is taken from a listing produced by the Pascal auditor. Each line of

the source text is preceded by its line number. The lines prefixed by three asterisks are

error messages. The number following the asterisks is the column number of the start of

the region associated with the error message.

The error messages produced for the Graham-Rhodes example are as good as those

that an expert programmer checking the program for errors might be expected to

produce. However, semantics affected the choice of repairs in only one case. The

recovery algorithm would not have chosen to delete the slash('/') that appears in column

28 of line 5 had semantic information been ignored. The cost of deleting the slash is

greater than the cost of inserting an identifier between the star ('*') and the slash.

Hence, if semantic information were ignored, the local recovery algorithm would have

chosen to repair the error by inserting an identifier. That repair was not chosen because

the expression in which the slash occurs is a subscript expression. The type of the

subscript is known to be integer; however, in Pascal, the result type of the operator'/' is

real. Therefore, simply inserting an identifier leads to a semantic error.

1 program sillypascal(input, output);
2 va.r
3 mychar: char;
4 begin
5 read mychar;

*** 7: e- inserted'('

*** 14:
6

e - inserted ')' before
end.

.. '

Figure 8.2 P. J. Brown's example

Figure 8.2 shows the result of applying the Pascal auditor to P. J. Brown's example

[Bro82, Bro83]. When this example is presented to the version of the Pascal auditor that

ignores semantic information during error recovery, it recovers from the syntactic error

by inserting a semicolon(';') between the procedure read and the variable mychar. As a

result of that repair, two semantic errors are also reported. The message "missing

parameter list" is given following the function read, and the variable mychar is flagged

with the message "a variable appears where a procedure was expected."

8.8 Comparisons

The goal of this work has been to develop practical error recovery techniques that

diagnose errors more accurately than do earlier techniques. To measure the success of

this work, the recoveries produced by the Pascal auditor have been compared with those

78

produced by Berkeley Pascal [GHJ79] and the Burke-Fisher system [BF82]. Berkeley

Pascal's error recovery system is perhaps the best system yet to be included in a

production compiler. The Burke-Fisher error recovery system was developed as an

enhancement of Berkeley Pascal's system. The Burke-Fisher system has been used in

some experimental compilers.

The major innovation of this work is the use of general static semantics to aid in

error recovery. Testing the Pascal auditor against earlier error recovery systems

provides evidence of the advantages of semantics-directed error recovery, but that

evidence is muddied by other differences among the various systems. To provide clearer

evidence of the benefits of using semantics-directed error recovery, a version of the Pascal

auditor in which semantic information is ignored during error recovery has been created.

The recoveries produced by that version of the Pascal auditor have been compared with

the recoveries produced when semantic information is used.

Some of the listings used in the comparisons are reproduced in Appendices B, C,

and D. Appendix B contains the listings for every program in the test sample where the

recoveries chosen by the version of the Pascal auditor that ignores semantic data differ

from the recoveries chosen by the version of the Pascal auditor which uses semantics.

Appendix C contains the listings for every program where the recoveries produced by

Berkeley Pascal or the Burke-Fisher system are better than those produced by the Pascal

auditor. Appendix D contains the listings for some of the programs for which the Pascal

auditor outperforms Berkeley Pascal.

The test sample used in the comparisons is a modified version of the Ripley

Druseikis sample [RD78]. The Ripley-Druseikis sample consists of 126 Pascal programs

that demonstrate a variety of errors. Unfortunately, the programs contained in the

original sample are incomplete. In particular, most declarations are missing. The

programs in the modified sample include all necessary declarations.

The comparison with Berkeley Pascal produced impressive results. The Pascal

auditor produced better recoveries than did Berkeley Pascal for 43 of the programs in the

test sample. The Pascal auditor's recoveries were inferior to those of Berkeley Pascal for

only seven programs.

Six of the cases where Berkeley Pascal produced better recoveries than the Pascal

auditor did not involve semantics. Berkeley Pascal is sometimes able recover from an

error by inserting two tokens. That capability accounts for two of the instances where

Berkeley Pascal outperforms the Pascal auditor. Berkeley Pascal treats some multiple

character symbols as sequences of tokens. In particular, the symbol ':=' is treated as the

token ':' followed by the token '='. That feature accounts for three of those instances

where Berkeley Pascal bests the Pascal auditor. Berkeley Pascal's lexical analyzer treats

the symbol '!' as a special quote symbol. An error message is given for a string delimited

by '!', but the lexical analyzer recognizes it to be a string. Treating '!' as a string quote

accounts for one instance where Berkeley Pascal bests the Pascal auditor.

The Pascal auditor could be modified to produce the same recoveries as Berkeley

Pascal in the cases mentioned above. Berkeley Pascal's mechanism for inserting multiple

tokens could be copied in the Pascal auditor. The Pascal auditor could also be modified

to treat the symbol ':=' as two separate tokens and to treat the character '!' as a string

quote. However, those changes probably are not desirable. Treating the symbol ':=' as

two separate symbols causes bad recoveries for the examples in the Ripley-Druseikis

sample as often as it allows good recoveries that could not have been performed

otherwise. Furthermore, there are some errors for which treating ':=' as two symbols

allows Berkeley Pascal to perform apparently strange recoveries. For example, consider

the following listing produced by Berkeley Pascal:

1 program p;
2 var i: integer;
3 begin
4 8 := 0

e ----------- --- Replaced '=' with a keyword goto
5 end.

E 4 - 8 is undefined
E 4 - 0 is undefined
In program p:

w - variable i is neither used nor set

79

The likely error in this example is that the programmer wrote the digit 8 where he meant

to put the variable i. The recovery produced by Berkeley Pascal seems more likely to

confuse than inform most programmers. Treating the character '!' as a string quote

without regard to the context in which it appears seems more likely to lead to poor

recoveries than to good ones.

There was one case where using semantics to assist in error recovery led to an

inferior recovery. The program in that case was as follows:

program p(input, output);

var prcount, x: integer;

begin
99 prcount .- prcount;

X 1
end.

It seems likely that the programmer intended that the integer 99 should be a label.

However, because 99 was not declared to be a label, the Pascal auditor detects a semantic

error when it tries inserting a colon between 99 and prcount. Therefore, it rejects that

repair in favor of deleting the integer 99. Berkeley Pascal, the Burke-Fisher system, and

the Pascal auditor with semantics disabled all patched this error by inserting a colon

between 99 and prcount. Since the programmer probably intended to place a colon at

that location, the recovery chosen by those systems is better than the one chosen by the

Pascal auditor. There are no other programs in the Ripley-Druseikis sample where using

semantic data causes an inferior recovery to be selected. A better example, which does

not appear in the Ripley-Druseikis sample, would be if a goto-statement referring to the

label 99 appeared following the text examined during the forward move. The same

recovery would be produced for that example.

Those instances where the Pascal auditor outperformed Berkeley Pascal were also

analyzed. No one factor accounts for more than seven of those instances. The major

causes for the improvement include

1. The use of general static semantic information. Berkeley Pascal uses

some semantic data during error recovery, but it does not take

advantage of all of the static semantic information that is available.

2. The difference in the weights assigned to semantic information. The

cost of replacing one type of identifier with another in Berkeley

80

Pascal appears to be too low.

3. The use of LR(2) error checking. Berkeley Pascal is sometimes

unable to find the best recoveries because it has performed some

erroneous reductions.

4. The Pascal auditor's bracket repair capability.

5. The use of the spelling matcher for keywords.

6. A better panic mode algorithm. This result is surpr1smg since the

panic mode algorithm used by Berkeley Pascal was hand tailored.

The Pascal auditor outperformed the Burke-Fisher system for 31 programs of the

test sample. However, the reason the Pascal auditor did that well was that Burke and

Fisher did not use any error productions. Discounting those examples where the

improvement was due to error productions, the Pascal auditor did better than the

Burke-Fisher algorithm for 24 programs. There were only six programs for which the

Burke-Fisher system produced better recoveries than did the Pascal auditor.

The six programs for which the Burke-Fisher system produces better recoveries

than does the Pascal auditor have been analyzed to determine the reasons for differing

recoveries. Like Berkeley Pascal, the Burke-Fisher system is able to insert two tokens in

special circumstances. That capability accounts for two of the cases where the Burke

Fisher system produces a better recovery than the Pascal auditor. The Burke-Fisher

considers a repair to be viable after a very short forward move. In one program where

there are two unrelated errors in close proximity, the Pascal auditor rejects all repairs

because it detects a new error too close to the point of the repair, while the Burke-Fisher

system finds a repair because of its shorter parse check. The Burke-Fisher system is able

to delete terminal symbols that have been shifted onto the parse stack. That capability

leads to a better repair for one program. The Burke-Fisher system is sometimes able to

merge two adjacent tokens into a single token. In particular, for one of the programs in

the test sample, it is able to merge the identifier go and the keyword to to produce the

keyword goto. Finally, as was noted above, the Burke-Fisher system outperforms the

Pascal auditor in one case where the use of semantic data leads to an inferior recovery.

Most instances where the Pascal auditor outperforms the Burke-Fisher system stem

from the use of semantic information. The Burke-Fisher system considers more types of

repairs than either Berkeley Pascal or the Pascal auditor. However, the Burke-Fisher

system uses less information to decide which of the potential repairs to apply. Therefore,

it often chooses inferior repairs. Consider, for example, the statement

if nonprime = 0 then numprime,x. := numprime(x) + 1;

where numprime is an array of integers and x is an integer variable. The Burke-Fisher

algorithm repairs the syntactic errors in this example by replacing the comma with a

semicolon and inserting an identifier after the period.

The final comparisons were between the Pascal auditor and the version of the

Pascal auditor that ignores semantic information during error recovery. These

comparisons are the best test of semantics-directed error recovery, since the results are

not contaminated by other differences between the two systems. The listings produced

by the two versions of the Pascal auditor for every program for which the recoveries

differed are shown in Appendix B. There were 27 programs for which different recoveries

were produced. The recoveries produced using semantics were better for 21 of those

81

programs. The recoveries produced while ignoring semantics were better in only one

case. In the remaining 5 cases, the recoveries were different, but there was little

difference in their quality.

9

Implementation Notes

The preceding chapters dealt with the large issues involved in creating an error recovery

system. However, much of the time spent writing the Pascal auditor was expended

solving little problems. Many of those problems were of such a nature that they must

have arisen and been solved for other error recovery systems. However, because the

authors of those systems did not report their solutions, new solutions had to be developed

from scratch. Solutions to some of the problems encountered while implementing the

Pascal auditor are presented here as a guide to others.

0.1 Error Messages for Insertions

The Pascal auditor indicates the location of an insertion more clearly than either

Berkeley Pascal or the Burke-Fisher system. All three systems use a single caret to mark

the location of an insertion. Berkeley Pascal places the caret so that it points to the first

character of the first token following the insertion. The Burke-Fisher system has the

caret point to the last character of the last token preceding the insertion. For single

character tokens, both schemes might cause confusion. For example, consider the

following fragment of a listing produced by Berkeley Pascal

7 begin
8 p
9 q

e -------- --- Inserted
10 end.

'.'

In this example, p and q are parameterless procedures. The likely error is that the

semicolon that must follow p has been omitted. However, a naive user might believe that

the error message meant that a semicolon was inserted after q. The Pascal auditor places

the caret for an insertion so that it points to white space. The Pascal auditor's output

for the previous example is

7 begin
8 p

*** 4: e - inserted '.'
9 q

10 end.

As this example shows, having the caret point to white space leaves no doubt where the

insertion occurred. There are cases where there is no white space around the point of an

insertion. To avoid ambiguities in those cases, the Pascal auditor's error message

indicates which token the insertion preceded, as is illustrated by the following example:

82

83

2 var a: array [1+10) of integer;

*** 16: e- inserted ' .. /before '+'

If the phrase "before '+ '" were not provided, a naive user might think that the dots were

inserted after the '+ '.
The placement of a caret indicating the location of an insertion depends on the

token being inserted. If the token being inserted is a separator or a single character

closing bracket, it is inserted at the first location following the token preceding the

insertion. Otherwise, it is inserted at the first location preceding the token following the

insertion. Thus, the rules regarding the placement of carets cause the locations indicated

for the inserted tokens to conform to common coding conventions.

9.2 The Lexical Analyzer

The Pascal auditor's lexical analyzer is very fast. Its speed is one reason why the Pascal

auditor is as fast as it is relative to Berkeley Pascal. There are several reasons for its

speed. The routine for reading the input text uses the UNIX system call read directly,

and the buffer size was chosen to match the system buffer size. Thus, the overheads

associated with using the UNIX standard 1/0 library were avoided. To avoid

unnecessary copying, tokens are represented by pointers into the input buffer whenever

possible. Also, the lexical analyzer was coded in a style that avoids unnecessary

procedure calls.

The lexical analyzer's handling of semantic values can be improved. The semantic

value of an identifier is the string that represents that identifier. The semantic action

routines are responsible for looking up identifiers in the symbol table. Hence, when

evaluating the semantics associated with a possible repair, the local recovery algorithm

must look up the identifiers encountered during the forward move. The result is that the

error recovery routines spend about 12% of their time looking up identifiers. If the

semantic values of identifiers were made to be pointers to the associated symbol table

entry, that time could be saved.

Unmatched string quotes are among the hardest lexical errors to handle well. In

Pascal, a string is not allowed to extend past the end of a line. Therefore, if a line

contains an odd number of string quotes, there must be a lexical error. Many Pascal

compilers check for unmatched quotes only at the end of a line. If there are unmatched

quotes, a string is formed from the text from the last quotation mark to the end of the

line (an implicit quote assumed to exist at the end of the line). The text absorbed into

the string will often contain the tokens terminating the statement in which the quotation

mark appears. Thus, this manner of handling unmatched quotes sometimes interferes

with the analysis of the text on the following line.

Some new heuristics for handling unmatched string quotes have been applied in the

Pascal auditor. "Whenever a quotation mark is encountered, the number of quotation

marks to the right of it on the same line are counted. If no other quotation marks are

found, the original quotation mark is assumed to be unmatched. If an even number of

quotation marks are found on the rest of the line, there must be an error. A check is

made to see if the token preceding the original quotation mark can legally precede a

string. If not, the quotation mark is assumed to be unmatched. An unmatched

quotation mark is returned as an illegal token; no effort is made to construct a string

84

starting from it. This heuristic often allows the Pascal auditor to handle unmatched

string quotes more gracefully than if the simpler seheme described above had been used.

It is especially helpful is those circumstances where the programmer did not intend to

write a string at all, but simply made a typographical error.

The heuristic used by the Pascal auditor could be improved by checking if the token

following a supposed string can legally follow a string. For example, consider the

statement

writeln(' x =, x, 'y = ', y)

The apparent error is that a quotation mark is missing between the first equal sign and

comma; that is, the first quotation mark is unmatched. The heuristic currently used by

the Pascal auditor will cause it to decide that the last quotation mark is unmatched. If
the token following the string were checked, then it would be clear that the first
quotation is the one that is unmatched since the identifier y cannot immediately follow a

string. Therefore, the lexical analyzer would return an illegal character token for the

first quote. Eventually, the panic mode algorithm would report that the tokens between

the open parenthesis and the first comma constitute a malformed expression.

0.3 Assigning Costs to Syntactic Repairs

The costs of syntactic repairs in the Pascal auditor were based on intuition and

experimentation. The costs are small positive integers (see Section 8.3). Initially,

uniform costs were assigned to each class of repair. The cost of insertions was 3, the cost

of replacements was 5, and the cost of deletions was 7. Those costs were chosen because,

for a sample of erroneous Pascal programs, insertions were the best repair most often,

replacements next most often, and deletions least often. The costs were then refined for

the test sample to eliminate undesirable recoveries. Experience gained while refining the

costs showed that the best choice of costs for repairs often did not correspond to the

relative frequencies that those repairs were optimal.

For most errors, the relative costs of particular insertions and deletions have little

impact on the recoveries. Suppose that an error has been detected. Suppose further that

inserting or deleting a single token near the error's detection point eliminates all

detectable syntax and semantic errors in the surrounding text. Then that repair is

almost always as good a recovery as could be expected. Even when there are many

possible insertions or deletions that could repair an error so that no further errors are

discovered, there is usually little reason to prefer one of those repairs above the others.

The costs assigned to replacements strongly affect the quality of recoveries. The

costs of replacements should almost always be greater than the costs of insertions or

deletions. In fact, most replacements should be prohibited. For example, there is an

erroneous program for which Berkeley Pascal repairs an error in the program by

replacing the operator '+' with the keyword label. The chosen repair subsequently

causes a spurious semantic error to be reported. Worse than just being inaccurate, the

repair looks foolish. There is almost no chance that someone would accidentally write

'+' where he meant to write label. Experience indicates that initially all replacements

should be assigned prohibitively high costs. The cost of a particular replacement should

not be lowered until an example is found where that replacement is the best repair. In

addition to preventing some seemingly foolish recoveries, banning most replacements

reduces the number of repairs considered during error recovery, thereby making the

,.,

85

error recovery system faster.

The cost assigned to a replacement usually should be greater than the cost of

deleting the symbol being replaced and the cost of inserting the symbol replacing it.

Berkeley Pascal's convention of setting the cost of the replacement equal to the sum of

those other two costs seems a good idea. Errors for which the optimal repair is a

replacement are common. Thus, it might seem to be a mistake to assign high costs to

replacements. That notion is, however, incorrect. Replacements are usually the repair of

choice only if there is no simpler repair that is syntactically and semantically viable. If

inserting or deleting a single token repairs an error, then the chances are that that repair

is better than any replacement. There are, naturally, some exceptions to this rule. For

example, in Pascal, the cost of replacing a semicolon with a colon should be small, but

the cost of deleting a semicolon should be large.

Some special cases were found where the costs of some deletions should be lower

than the costs of some insertions. In particular, it was found that the cost of deleting a

right bracket should be lower than the cost of inserting the corresponding left bracket.

Suppose the parser discovers an extra right bracket. The chance that the programmer

intended to write another left bracket is probably about equal to the chance that he

meant to write fewer right brackets. However, even if the error recovery system could

determine that another left bracket should be inserted, it usually would still be unable to

determine where to insert it. On the other hand, deleting the unmatched right bracket

has a good chance of being the optimal repair. Thus, if an unmatched right bracket is

found, the chance that deleting the right bracket corresponds to the programmer's intent

is usually greater than the chance that any particular insertion of a left bracket

corresponds to his intent.

The costs of replacing an illegal character with legal tokens should depend on the

particular character. Suppose an illegal character appears in a Pascal program. The cost

of replacing that character by tokens represented by characters that are near it on most

keyboards should be less than the cost of replacing it with tokens represented by

characters that are far away from it. This idea was suggested before by Graham and

Rhodes [Gra75], but does not appear to have ever been implemented.

9.4 Recording Repairs

Many error recovery systems test a variety of potential recoveries before deciding which

recovery to apply. Therefore, it must be possible to keep track of which potential

recovery is the best of those tested thus far. The Pascal auditor uses an ad hoc encoding

for each type of recovery. A better alternative would be to use a generalized

representation that could encode any potential repair. Note that any repair can be

represented as some combination of deletions and insertions. Furthermore, the repair

algorithms developed until now can affect only a few positions within the input text.

Therefore, a general repair could be represented by a small vector whose elements

represent some sequence of insertions and deletions.

9.5 The Spelling Matcher

The spelling matcher has proven to be a valuable component of the Pascal auditor.

"While only a small percentage of recoveries are influenced by the spelling matcher, the

86

incorrect recoveries that would be generated for those cases if the spelling matcher were

not used would seem outrageous to the naive user' For example, in one program in the

Ripley-Druseikis sample, the keyword function is misspelled as "funtion." Normally, the

Pascal auditor will replace the identifier "funtion" with the keyword function.

However, if the spelling matcher is disabled, the Pascal auditor will replace "funtion"

with the keyword procedure.

The spelling matcher takes two input parameters: a source string and a target

string. Both the source string and the target string are assumed to end with a null byte.

The spelling matcher determines if the source string is a close enough match to the target

string that it could safely be assumed to be a misspelling of the target string. The Pascal

auditor uses the spelling matcher to decide if an identifier might be considered a

misspelling of a keyword.

The spelling matcher is much simpler than the spelling correctors used in compilers

such as CUPL[MoriO]. A spelling corrector takes a string and trys to find the keyword

or defined identifier which most closely matches the string. Thus, a spelling corrector

must try to match the string with every keyword and every identifier in the symbol

table. The Pascal auditor does not use a spelling corrector because the time and space

overheads associated with the spelling correctors that appear in the literature were felt to

be too great.

The algorithm used by the spelling matcher is shown in Figure 9.1. The type string

is a !-indexed array of characters. The strings are converted to lowercase because ANSI

Pascal does not differentiate on the basis of case. The conversion for the target string is

a wasted operation for the current Pascal auditor; the target strings passed to the

spelling matcher never contain uppercase characters. The special cases are provided to

allow for common substitutions for keywords that are not caught by the general

algorithm. The Pascal auditor recognizes four special cases: "constant" matches the

keyword const, "over" matches the keyword div, "go" matches the keyword goto, and

"proc" matches the keyword procedure.

The loop that forms the bulk of the algorithm counts the number of changes that

must be made to the source string to make it match the target string. If that number is

less than or equal to a limiting value, the two strings are considered close matches and so

true is returned; otherwise, the algorithm returns false. The limiting value is set to one

third the length of the source string. The loop scans through the source and target

strings checking if the corresponding characters are the same. Whenever it finds a

mismatch, it performs a sequence of tests to decide how to continue. It tests for

permutations, insertions, substitutions, and deletions, in that order. The order in which

the tests are done is significant. The test for permutations must precede all other tests

because the other tests can mask the presence of a permutation.

...

function spell(source, target: string): Boolean;

begin

end

convert all uppercase characters in the source string to lowercase;

convert all uppercase characters in the target string to lowercase;

if the arguments form a special case then
return true;

source_ length := the length of the source string;

target_ length := the length of the target string;

limit := source_ length div 3;

number_ of changes := 0;
i := 1;
j:= 1;
while (i source_length) and (j target_ length) do

if source[i] = target[j] then
begin i := i + 1; j := j + 1 end

else
begin

end

if number_of_changes =limit then
return false;

number_of_changes := number_of_changes + 1;

if (source[i] = target[j + 1]) and (source[i + 1] = target[j]) then

begin i := i + 2; j := j + 2 end
else if source [i + 1] = target [j] then

begin i := i + 2; j := j + 1 end
else if source [i + 1] = target [j + 1] then

begin i := i + 2; j := j + 2 end
else

j:= j+ 1

if number_ of_ changes + abs(i - target_ length) < limit then

return true
else

return false

Figure 9.1 The spelling matcher

87

10

Future Work

Experience with Bison and the Pascal auditor has revealed many lines for further

research. Ideas for improving the error recovery techniques described in earlier chapters

are discussed in those chapters. This chapter describes ideas for future work that lie

outside the purview of earlier chapters.

10.1 New Test Suites for Error Recovery

The Ripley-Druseikis sample of erroneous Pascal programs [RD78J has been a valuable

contribution to research in error recovery. By providing a standard set of test examples,

it has made meaningful comparisons of diverse error recovery systems possible. However,

the Ripley-Druseikis sample has become dated.

The programs on which the Ripley-Druseikis sample was based were gathered at the

University of Arizona computing center in the mid 1970's. At the time, that center was

mainly a Fortran shop. Keypunches and batch processing were the rule of the day.

Changes in programming environments over the years have, to some extent, altered the

types of errors people make. For example, the Ripley-Druseikis sample includes

programs where an error was corrected, but a copy of the line containing the error was

left in the program. This type of error is common in a punched card environment (the

user simply forgets to throw a bad card away). It is not common when programs are

created using an interactive text editor.

There are many types of errors that are not represented in the Ripley-Druseikis

sample. Several features of Pascal are not used in any of the programs. No record type

specifiers, case-statements, or with-statements appear in the sa.lij.ple. Presumably, the

number of programs that contained those features fell below the threshold needed to be

included. Also, since the sample was created for the analysis of syntactic errors, semantic

errors, even those that result from syntactic causes, are not represented.

Since the erroneous programs were gathered at a university, it may be inferred that

the sample is representative of the types of errors made by student programmers. It

seems unlikely that production programmers make the same types of errors as students;

however, no evidence has been gathered to support that conjecture. A statistically

weighted sample of erroneous programs written by production programmers could

provide the evidence needed to assess that conjectni-e's validity.

The fact that the only standard suite of erroneous programs is a sample of Pascal

programs has led those who study error recovery to concentrate on error recovery for

Pascal. Indeed, the fact that the Ripley-Druseikis sample was composed of Pascal

programs was the main reason why the auditor used to test the error recovery techniques

described herein was written for Pascal. The effectiveness of an error recovery technique

may differ for various languages. Error samples for other languages could serve as

vehicles for showing that an error recovery technique is robust.

88

89

Creating new error samples is a nontrivial task. To obtain a statistically valid

sample, thousands, perhaps tens of thousands, of erroneous programs must be gathered.

Each program must be inspected to determine the nature of the errors contained in it.

Only then can a representative sample be extracted. Just obtaining an unbiased

collection of erroneous programs can be difficult. A compiler could be modified to save

copies of programs containing errors. However, because programmers are likely to

compile several erroneous versions of a program before eliminating all detectable errors, a

sample ,gathered in that way is likely to be biased.

10.2 Error Productions

As was noted in the introduction, error productions extend the syntax of the language to

be analyzed. Error productions can be used to handle errors that could not otherwise be

handled well. Examples of uses for error productions are given by Fischer and Mauney

[FM80]. Error productions must be provided by the compiler writer. Obtaining good

results from error productions requires a sharp sense of which error productions should

be provided. As a rule, error productions should be used to relax nonintuitive syntactic

restrictions.

Error productions are useful, but they are also troublesome. Error productions may

cause an error recovery system to mishandle some errors that they would otherwise

handle well. For example, when Berkeley Pascal analyzes the declaration

canst kp1 = k + 1;

it produces

4 canst kpl = k + 1;
E -------------------- --- Expected '.'

e -------------------- --- Replaced '+' with a keyword label

The apparent error is that an expression has been used where a constant is required.

The poor recovery is the result of error productions: one missing, and one present. If

the grammar for Berkeley Pascal contained error productions pe~mitting expressions to

appear in most contexts where constants are allowed, as does the Pascal auditor, the

error would have been handled well. On the other hand, Berkeley Pascal does contain

error productions allowing declarations to appear in any order. A stricter grammar

would not permit a label declaration to follow a constant declaration, and so it would be

impossible to substitute the keyword label for the operator '+'.
Error productions may cause a grammar that was acceptable to a parser generator

to cease being acceptable. Recall that in Section 8.3, it was mentioned that the bounds

of a subrange could not be allowed to be expressions. If a parenthesized expression is

allowed as the bound of a subrange, then the bound of a subrange can be syntactically

equivalent to an enumerated type. For example, in the declaration

type t = (red) .. green;

it is impossible for the parser to determine that red is an expression and not the name of

an enumeration constant until the token ' .. ' is read. \Vhile it is possible to write a

90

grammar that allows delaying the decision of whether to reduce red to an expression or

an enumeration constant until after the two following tokens have been read, the natural

grammar for that construction is LR(2).

Another problem of error productions is illustrated by an idea suggested by Fischer

and Mauney [FM80]. Consider the code fragment

a[i] = a[j] then p(i, j);

where a is an array variable. The likely error is that the keyword if has been deleted

from the start of the line. However, the error will not be detected until the equals sign

has been read. By that time, the parser will have performed shifts and perhaps

reductions that will preclude inserting the keyword it at the start of the line. Therefore,

unless the recovery algorithm can back up the parse, the best repair possible is to replace

the operator '=' with the symbol ':=' and the keyword then with the symbol ';'.

Fischer and Mauney suggest using error productions to deal with this type of error.

They advocate adding error productions that permit parsing an if-statement without a

leading if. As they note in their article, those error productions will permit the previous

error to be handled well. What they fail to note is that the same productions will

prevent a more common error from being handled well. For example, consider the

statement

a[i] = a[j];

The apparent error this time is that the symbol '=' appears where the symbol ':='was

intended. This error is easy to handle if the parser recognizes the error before shifting

over the equals sign. However, if the error productions suggested by Fischer and Mauney

are used, an expression will be allowed to appear as the head of a statement. Therefore,

the error will go undetected until the semicolon is read. Hence, an error recovery

algorithm that cannot back up the parse will be unable to replace the symbol '=' with

the symbol ':='.

Thus, error productions are shown to be a valuable but flawed tool for error

recovery. There may be ways of minimizing the harmful effects of error productions

without reducing their usefulness. Error productions could be distinguished from normal

productions. A parser generator might accept a strict grammar for a language together

with a set of error productions. The error productions could either augment the rules of

the strict grammar or supplant them. For example, the rules for the if-statement missing

the leading if would augment the normal rules for statements, whereas the rules

substituting expressions for constants would supplant the strict rules for constants. A

parser for the strict grammar could be generated along with tables indicating how the

parser would be different if the error productions were used. During normal compilation,

the parser would recognize the strict form of the la,nguage. Thus, syntax errors would be

detected as soon as possible. When an error was detected, the parser would be backed

up to states in the parse stack that the parser generator indicates would be different if

the error productions had been used. If parsing is able to continue without error until

the full construct described by the error productions is recognized, normal parsing could

then be resumed. Otherwise, the rest of the error recovery machinery would be invoked.

The recovery algorithm could consider using error productions as part of a recovery, but

be biased against such recoveries. The problem of the mechanism just described is its

cost. The ability to back up the parse to those states that would be different if the error

productions were used is not quite as expensive as a general backup facility, but it comes

91

close. Further, the information that would have to be stored to make the system work

could require more table space than the parser itself.

10.3 Improving the Parser Generator

The parser generator Bison was designed to be a research tool. The parsers created by

Bison incorporate only a few of the error handling features described herein, namely,

LR(2) checking for syntax errors, semantic guards, and the location stack. The

remaining error handling capabilities must be provided by the user. "When a Bison

parser detects an error, it restores the parse stack if necessary and then calls a routine

named yyrecover. Yyrecover must be supplied by the user. This arrangement was

adopted because the error recovery routines were in a state of flux. The recovery

routines would have taken much longer to develop had it been necessary to modify Bison

to test the effects of a change.

If Bison were to be made into a production parser generator, it should generate the

error recovery routines automatically. Most compiler writers cannot be expected to

know or care how error recovery is done, so long as it is done well. The recovery

algorithm created in this work could easily be incorporated into a parser generator. The

compiler writer still must supply some information to the recovery system. The cost

functions !cost, Dcost, and Rcost are language dependent and so must be provided by

the compiler writer. The compiler writer must also designate which tokens should be

regarded as brackets and which should be regarded as separators.

A parser generator for production use should possess capabilities that were not

included in the current version of Bison. Aho, Johnson, and Ullman [AJU75] showed that

smaller and faster parsers can be created for practical languages it ambiguous grammars

are used. Bison incorporates some of their suggestions, but not all. In particular, their

system for using operator precedence to resolve ambiguities has not been implemented.

For Pascal, that feature is not important because there are few levels of precedence.

Some other languages, such as C [KR78], have many levels of precedence. The parsers

for those languages can be made more efficient by using ambiguous grammars and

precedence declarations.

Some texts on compiler writing, such as [AU77], indicate that LALR(l) grammars

are suitable for describing the syntax of almost all programming languages. Experience

gained while writing the Pascal grammar used by the Pascal auditor contradicts that

notion. Even ignoring factors affecting error recovery, the rules describing declarations

and record type specifiers must be carefully constructed to make the grammar LALR(l).

However, both of those features can easily be described in an LALR(2) grammar. Other

languages also contain constructs that can be described more naturally with LALR(2)

grammars than with LALR(l) grammars. Wetherell [Wet81] describes such a construct

in Ada. Extending Bison to handle LALR(2) grammars should not be difficult. Most of

the information needed to compute the LALR(2) lookahead sets is present in the

DeRemer-Pennella algorithm for computing LALR(l) lookahead sets [DP82].

Using a contorted grammar can hurt the quality of error recovery. Automatic error

recovery techniques are heavily influenced by the grammar. Therefore, the structure of a

grammar should correspond as closely as possible to the programmer's view of the

syntactic structure of the language. "When the grammar deviates from that conceptual

syntactic structure, recoveries that are not intuitively appealing may result. In the

Pascal auditor, a few recoveries suffer because the syntax of declarations does not match

92

what a programmer would regard as the syntactic structure of declarations. If an

LALR(2) grammar for declarations could have been used, those problems would not have

arisen. On the other hand, the tortuous rules needed to describe record type specifiers do

not appear to affect the recoveries chosen.

10.4 Enhancing the Local Recovery Algorithm

One reason the Pascal auditor generally diagnoses errors more accurately than does

Berkeley Pascal is that it considers more potential repairs. Furthermore, in almost every

instance where Berkeley Pascal or the Burke-Fisher system outperforms the Pascal

auditor, it is because they find a repair that was not considered by the Pascal auditor. It

seems likely, therefore, that the quality of repairs produced by the Pascal auditor could

be improved by having it consider more types of repairs.

An obvious way of increasing the number of repairs considered is to consider

combinations of simple repairs. The repairs could even affect different parts of the input

text. Some types of errors, particularly bracketing errors, cannot be accurately

diagnosed unless such repairs are considered. An early version of the Pascal auditor

considered combinations of two simple repairs. That version of the Pascal auditor

generally found better repairs than the current one. However, the time needed to select

a recovery was too great. The current repair algorithm typically considers a few

hundred potential repairs for each error. The earlier version typically tested tens of

thousands of potential repairs. That early algorithm screened out cases where a simple

repair was obviously best; nonetheless, it was at least two order,s of magnitude slower

than the current repair algorithm.

Bracket repairs are the remnant of that earlier algorithm. The cost of bracket

repairs is significant; the error recovery algorithm spents about 10% of its time

considering bracket repairs. The time spent is worth the cost because a significant

percentage of errors are diagnosed more accurately. Often where a bracket repair is

applied, the recovery algorithm would have been invoked twice if bracket repairs were

not done, once for the opening bracket and once for the closing bracket.

Thus, combinations of repairs have been found to be too expensive to apply in

general, but have been useful in a special case. It seems unlikely that a recovery

algorithm that allows general combinations of repairs can be made practical. However,

there may be other special combinations of repairs that are worth considering.

The error recovery algorithm could both save time and produce better quality

repairs if the length of each forward move could be varied appropriately. The current

limit on the length of a forward move is twelve tokens. Most errors can be diagnosed

accurately without looking at more than nine tokens. Therefore, the recovery algorithm

typically wastes time performing unnecessarily long forward moves. On the other hand,

bad repairs are sometimes selected because the repair algorithm does not look ahead far

enough. Suppose a program contains a line of the form

if i j + .. · + k then

where "· · ·" represents an arithmetic subexpression, and i, j, and k are integer variables.

An error will be detected between i and j since identifiers cannot be adjacent in Pascal.

The Pascal auditor repairs the error by inserting an operator between i and j. If the

subexpression is less than 8 tokens long, the local recovery algorithm will read the token

,

93

then while testing potential repairs. Therefore, it will know that the expression must be

of type Boolean, and so it will insert the relational operator '='. Otherwise, it would

insert the arithmetic operator '+'. Inserting the relational operator is clearly the better

repair. However, in other instances, the expression could be followed by a relational

operator and another arithmetic expression. In such a case, inserting the arithmetic

operator would be better. The recovery algorithm cannot tell which case applies unless

the forward move reaches the token then.

The current repair algorithm is naive in its use of semantic costs. Experience has

shown that the range of costs is unnecessarily large, while the range of effects is

undesirably narrow. The costs assigned to semantic errors have little effect on the choice

of repairs. Recall that the semantic cost of a potential repair is the sum of the costs

returned by the semantic guards during the forward move done to evaluate the repair.

The repair algorithm always chooses a repair whose semantic cost is zero if any such

repair is found. For almost all of the programs in the sample of erroneous programs used

to measure the performance of the Pascal auditor, there was at least one potential repair

whose semantic cost was zero. Therefore, the costs assigned to semantic errors usually

did not matter since if the semantic cost of a potential repair were little as one, it usually

was great enough to preclude the choice of that repair. For this reason, Schmauch's

simple scheme for semantics-directed error recovery (see Chapter 3) should usually be as

effective as that used by the Pascal auditor. '

Semantic costs not only influence the choice of repairs, but can absolutely block the

choice of a particular repair. If the semantic cost of a potential repair exceeds some limit

value, the repair is automatically rejected. In retrospect, this mechanism could prevent

some errors that would otherwise be easy to repair from being repaired. Suppose that a

syntax error is closely followed by an unrelated semantic error whose semantic cost

exceeds the limit value. Then all possible repairs of the syntax error will be rejected

because of that unrelated error. No examples of this performance have yet been

observed, but it could happen.

The integration of semantic and syntactic costs could be handled better. It is not

clear that potential repairs whose semantic cost is zero should always be favored over

repairs whose semantic cost is positive. Instead of having a wide range of semantic costs

representing the severity of the error, it might be better to group the errors into a small

number of classes, each of which is treated differently. There might be four classes of

semantic errors: trivial, normal, severe, and intolerable. A trivial semantic error would

have the effect of adding a small amount to the syntactic cost of a repair. A repair for

which only trivial semantic errors are found while testing the repair would be favored

over all repairs for which more serious semantic errors are found, but would not

necessarily be rejected if a repair for which no semantic errors are detected is found.

Normal errors would be treated much the same as semantic errors are currently treated.

A repair that leads to a severe semantic error might not be permitted if the associated

syntactic cost were too great. Repairs that lead to intolerable errors would not be

permitted at all. For example, in Pascal, a scalar variable cannot be followed by a left

bracket. Therefore, inserting a left bracket following a scalar variable might lead to an

intolerable semantic error. In addition to preventing some bad recoveries, treating some

semantic errors as intolerable errors may improve efficiency by causing forward moves

for bad repairs to be ended sooner than they might otherwise be ended.

It should be noted that the current system of using semantic costs works well.

Although the ideas mentioned above may sometimes lead to better repairs, the current

semantics-directed repair algorithm produces good recoveries in most cases. The

suggestions made above are the result of reflections on ways to improve the algorithm

94

rather than any demonstrated need for improvement.

Multiple errors in a single context often lead to inferior recoveries. For example,

there are two errors in the statement

i = j + k) then ~oto 10

The keyword if is missing from the start of the line, and an extra right parenthesis

appears between k and the keyword then. The first error is detected as soon as the

token '=' is read. At that point, the error repair algorithm is able to insert the keyword

if at the start of the line. However, because of the second error, the forward move never

reaches the keyword then. Therefore, the best repair is rejected in favor of a less

desirable repair.

The problems posed by multiple errors can easily be solved if efficiency is not a

consideration. For each viable repair for the first error, the error repair algorithm could

find the best repair for the second error after patching the first error. The best

combination of repairs could be chosen based on the total cost of both repairs. Further

research might reveal an efficient technique that produces similar results.

10.5 Other Languages

Perhaps the most important unanswered question about the error recovery techniques

described herein is whether will they carry over to languages other than Pascal. Pascal is

an almost ideal vehicle for error recovery. Its baroque syntax and restrictive semantic

rules often lead to errors that are easily repaired. Moreover, the language is highly

redundant. Therefore, a potential repair's viability can almost always be determined by

examining the surrounding context.

Shebanow is currently implementing a front end for a C compiler that incorporates

advanced versions of the error recovery techniques described herein. Error recovery for

C appears to be more difficult than for Pascal. C is much less redundant than Pascal.

For example, in Pascal, if the keyword if were missing from the start of a conditional

statement, the subsequent keyword then would signal its absence. Now consider the

following erroneous code fragment from a C program

(i == j) key = tab/e[i];

The error in this example is that the keyword if is missing at the start of the line.

Because C is an expression language, no error is detected until the identifier key is read.

At that point, the most likely repair would be to insert a semicolon(';') before key. Even

if the recovery algorithm did decide that a keyword was missing from the start of the

line, it would have to make an arbitrary choice between inserting if or while.

The use of semantics during error recovery probably will not prove as advantageous

for C as it did for Pascal. The type rules of C are much less strict than those of Pascal.

Therefore, many semantic errors are undetectable. On the other hand, bracket repair

should be even more effective in C than it was in Pascal. C contains more bracketed

constructs than does Pascal and more types of brackets.

Ada [DoD83] seems well suited for the error recovery techniques described herein.

Certain of Ada's constructs cannot be identified by syntactic information alone.

Therefore, semantics-directed error recovery may prove essential to avoiding frequent

...

95

misdiagnosis of errors. Further, Ada is highly redundant; even more so than Pascal.

Implementing semantic-directed error recovery for Ada is complicated by Ada's

rules for resolving overloading. The type of a component of an expression in general

cannot be determined until after the entire expression has been parsed. Therefore,

semantic errors will sometimes go undetected until long after the point in the text where

the error was made. Therefore, an error recovery system for Ada may need to be able to

backtrack the analysis of expressions.

Semantics-directed error recovery could be applied to languages that do not require

definition before use; however, the cost of doing so may be high. Compilers for languages

that allow use before definition are usually multi-pass compilers. Implementing

semantics-directed error recovery for such a language may require an additional pass that

precedes parsing. That pass would determine the block structure of the program and

process all recognizable declarations, but it would not parse statements and expressions.

Koster [Kos73] has reported some work along these lines. Semantics-directed error

recovery can then be done while the program text is parsed, since the necessary semantic

information will be available.

An implementation such as that outlined above suffers from two problems. First,

the global bracketing structure of the program will have to be parsed without the benefit

of semantics-directed error recovery. This is not a great disadvantage, since, in most

languages, the types of semantic information available during semantics-directed error

recovery would have little effect on the choice of recoveries. The other problem is that a

declaration may be missed by the earlier pass because of an error. The error may not be

discovered until after other errors have been repaired based on faulty information. The

error recovery system would then have to back out of any actions done as a result of

those repairs. Any scheme for providing that type of capability is likely to be too slow to

be practical.

11

Conclusions

The major result of this work was the development of practical techniques for applying

general static semantic information to assist in recovering from syntactic errors. This

result was achieved by extending the Graham-Haley-Joyerror recovery algorithm to take

semantic costs into account when selecting a repair.

The main obstacle to the creation of a system for applying semantics to error

recovery was the need to be able to reverse the effects of semantic actions. To be able to

determine the semantic cost of a repair, semantic checking must be done in tandem with

parsing. However, semantic checking involves performing the semantic actions associated

with the syntactic constructs being recognized. Since performing semantic actions affects

the state of compilation, the effects of semantic actions performed while testing potential

repairs that are rejected must be negated so that compilation can continue normally after

recovering from an error.

No practical solution to the problem of negating the effects of semantic actions

performed by conventional compilers was found. Therefore, it was necessary to

formulate a restricted model of compilation that was suited to undoing those effects. It

was found that the LL- and LR-attributed grammars constituted just such a model.

However, currently, compilers based on those types of attribute grammars are too slow to

be practical even for normal compilation. Therefore, a new model of compilation was

formulated. The new model consists of synthesized attributes together with a symbol

table that allows the effects of symbol table operations to be undone. Two symbol table

organizations suited for use in such a model were developed.

Another contribution of this work concerned methods for avoiding the deleterious

effects of reductions performed because of erroneous input. The methods included

general backtracking, suppressing default reductions, LR(1) pretesting, stack restoration,

and limited backtracking. LR(l) pretesting and limited backtracking are new techniques

developed during this work. General backtracking, suppressing default reductions, and

stack restoration were first suggested by others. Comparisons of the various methods

showed that limited backtracking was the best method for use with semantic-directed

error recovery.

The final contribution of this work was a new panic mode recovery technique for

use with LR parsers. The new technique is largely a synthesis of existing techniques. It

is essentially an adaptation of Hartmann's panic mode technique for recursive descent

parsers [Har77]. Hartmann's technique depends on knowing the set of nonterminal

symbols currently involved in the derivation being produced. A close approximation to

that information for bottom-up parsers is provided by Sippu and Soisalon-Soininen's

concept of a feasible reduction goal [SS83]. The new technique incorporates the concept

of feasible reduction goals into a panic mode algorithm for LR parsers that is closely

related to Hartmann's technique.

The goal of this work was to develop better techniques for error diagnosis.

Comparisons with two of the best existing error recovery systems, Berkeley Pascal

[GHJ79] and the Burke-Fisher system [BF82], show that that goal has been achieve-d.

96

97

Further, timings demonstrate that the execution time overheads associated with the new

techniques are reasonable. The Pascal auditor analyzes error-free programs at about the

same speed as Berkeley Pascal. On the other hand, the Pascal auditor takes longer to

recover from an error than does Berkeley Pascal. On average, it is from two to three

times slower. Nonetheless, the new system is fast enough to be practical. "When running

on a V AX.-11/780, the Pascal auditor typically requires less than one-tenth of a second to

recover from an error.

The main drawbacks of the new error recovery techniques are their space

requirements and the difficulty of applying them. The code and tables for the Pascal

auditor occupy about 12% more space than the translator for the Berkeley Pascal

interpreter. It the Pascal auditor were extended to generate code similar to that

produced by the translator for Berkeley Pascal, it would be at least 50% larger than that

translator. Also, the new symbol table organization requires more space than would be

needed by a conventional compiler. The greater space requirements are probably

irrelevant for major computing systems. They may, however, be an obstacle to use of

the new techniques in compilers for computers with limited address spaces.

The difficulty of applying the new techniques is likely to be an impediment to their

use. "When a conventional compiler detects an error during semantic analysis, it simply

produces an error message. The semantics-directed error repair algorithm requires the

compiler writer to provide additional information about semantic errors. The semantic

routines must indicate which errors should cause the error recovery algorithm to be

invoked, and they must assign costs to each error. To fulfill these requirements, the

semantic routines must do a more detailed error analysis than is done by the semantic

routines of conventional compilers. Further, the restrictions prohibiting semantic actions

from altering existing semantic attributes or global variables outside of the symbol table

sometimes force the compiler writer to use algorithms or data structures for semantic

analysis that he would not normally choose.

The techniques for applying general static semantic information to syntactic error

recovery are the culmination of one line of research into error recovery. The error

recovery systems of Feyock and Lazarus [FL76J and Graham, Haley, and Joy [GHJ79J

were able to improve on earlier systems by using some semantic data to help detect and

recover from syntax errors. The error recovery techniques described herein carry that

idea to its practical limits. All static semantic information that would normally be

produced by a compiler is used by the new techniques. The techniques could be extended

to find and make use of information not needed during normal compilation, and better

recoveries could sometimes be done using that additional data. However, the proportion

of cases where such information would be useful is small, and so the time spent gathering

it will usually be wasted.

•

Appendix A

The Grammar for the Pascal Auditor

This appendix contains a listing of the grammar used in the implementation of the Pascal

auditor. For ease of reference, each rule is labeled by a distinct rule number. The names

of terminal symbols are written in uppercase, and the names of nonterminal symbols

appear in lower case. Some of the reasons for using this particular grammar are given

below.

The names of most terminal symbols clearly indicate which symbols they denote.

For example, each name that denotes a keyword has the same spelling as the keyword

that it denotes. The meanings of a few names are not as obvious. Those names and

their meanings are as follows:

ID an identifier

INT an unsigned integer constant

REAL an unsigned real constant

STRING a character string constant

DOT a period I I

UPTO the range symbol I I

ARROW a caret '.,
BECOMES the assignment sym hoi '·-' .-

LPAR a left parenthesis '('
RPAR a right parenthesis ')'
LBRAK a left bracket '['
RBRAK a right bracket 'I'

In addition, there are two special tokens, ERROR and FORWARD, which are not a part

of the language. The Pascal auditor's lexical analyzer never returns either of those

tokens. ERROR is the error token recognized by the Pascal auditor's panic mode

algorithm (see Section 7.3). FORWARD is a pseudo-keyword. In ANSI Pascal [ANS83],

the symbol "forward" is an identifier. However, it is distinguished from other identifiers

in that it may appear as a forward directive. The special token FORWARD is used to

allow the spelling matcher to replace an identifier with a forward directive. The special

token is needed because the spelling matcher tries to match identifiers with keywords but

does not try to match identifiers with other identifiers.

Rules 2, 129, and 141 were included to prevent the panic mode algorithm from

performing certain bad recoveries. Note that these rules are simple chain rules whose

elimination would in no way affect the language defined by the grammar. However,

before these rules were added, whenever the parser encountered a declaration with the

statement part of a block, the panic mode algorithm would discard the preceding portion

of the statement part or the block and back up to the point where it could begin

processing new declarations. This action would "Sometimes throw the parser off the track

99

100

so that many spurious errors would be detected, and it would sometimes cause the

nesting level of the symbol table to be altered. It is interesting to note that Berkeley

Pascal suffers from similar problems. ·

The rules defining the nonterminal symbol newtype contain some notable features.

Rule 16 is the rule where the nonterminal symbol konst which defines a constant could

not be replaced with the nonterminal symbol expr because an LR(1) conflict would result

(see Sections 8.3 and 10.2). The nonterminal symbol closer that appears on the rhs of

rule 18 derives the empty string. It is used to close the scope that is opened when the

start of a record type specifier is recognized (see rule 36). Rules 19 and 20 are error

productions that allow general types to appear in contexts where the strict definition of

the language permits only restricted subclasses 'of types. Rule 22 is also an error

production. It permits a general type specifier to appear following a caret. ANSI Pascal

requires the type specifier following a caret to be a type identifier.

Rules 36 through 55 define the syntax of a record type specifier. The tortuous

definition given was not chosen because of any considerations regarding error recovery.

Rather, it was the simplest definition found that did not cause an LALR(1) conflict. A

simpler definition could have been used if either ANSI Pascal had defined the syntax of

record type specifiers slightly differently or if an LALR(2) parser generator had been

available. Rule 55 is an error production that permits a general type specifier to appear

where the strict language would require a type identifier.

Rules 7 4 and 91 - 101 define the syntax of a parameterized procedure statement.

The rules had to be factored in this way to permit the declaration of the procedure

identifier to be percolated up to the parameter expressions so that their types could be

checked as they were recognized. If the semantic routines of the Pascal auditor were

allowed to use inherited attributes, a more natural syntax could have been used (see

Section 5.3).

Rules 125 and 126 define control symbols for changing the nesting level. The

semantic routine for the nonterminal symbol opener increases the nesting level by one.

The semantic routine for the nonterminal symbol closer pops the current scope.

Rules 133 is an error production that allows a return type to be specified in a

procedure header. The nonterminal symbol prcerr is a control symbol whose only

function is to signal that the error recovery algorithm should be invoked. The reason the

error recovery algorithm is invoked before the error production can be applied is to allow

for the possibility that the tokens that appeared to form a return type specification for

the procedure are really the result of some other error.

Rules 202 through 217 have been factored in a way that allows information about

the name that appears at the left of an Ivai to be made available to the semantic routines

for the components of the Ivai. Again, if inherited attributes could have been used, this

syntax could have been simplified.

i"-
1

I
I

I

1

2

3
4

5
6

7
8

9
10

11
12
13

14

15
16
17
18
19
20
21
22

23
24

25
26
27
28
29
30
31

program

gbldcls

pgmdcls

pgmhead

propopt

propars

type

typname

newtype

vnames

konst

gbldcls block DOT

pgmdcls

pgmhead
pgmdcls del

PROGRAM ID propopt SEMICOLON
PROGRAM ERROR

LPAR propars RPAR

ID
propars COMMA ID

typname
newtype
ERROR

ID

LPAR vnames RPAR
konst UPTO konst
packopt ARRAY LBRAK indxtys RBRAK OF type
record closer
packopt SET OF type
packopt FILE OF type
ARROW ID
ARROW newt yp e

ID
vnames COMMA ID

!NT
STRING
name
PLUS !NT
MINUS !NT
PLUS name
MINUS name

101

102

32 packopt
33 PACKED

34 indxtys type
35 indxtys COMMA type

36 record packopt RECORD opener fldlist END

37 fldlist fixdhead
38 fixdpart
39 varipart
40 variend

41 fixdhead:
42 I fixdpart SEMICOLON

43 fixdpart: fixdhead !names COLON type

44 !names ID
45 !names COMMA ID

46 varihead: fixdhead CASE selector OF
47 I variend

48 varilist: varihead konst
49 I varilist COMMA konst

50 varipart: varilist COLON LPAR fldlist RPAR

51 variend : varipart SEMICOLON

52 selector: seltype
53 I ID COLON seltype

54 seltype typname
55 newtype

56 block BEGIN stmts END

57 name ID

58
59
60
61
62
63
64

65
66

67
68

69
70

71
72
73
74
75
76
77
78
79
80
81
82
83

84

85
86

87
88

89
90

91
92
93

del

stmts

stmt

labels

usta.t

erropt

dest

ca.llO

la.beldcl
constdcl
typedcl
va.rdcl
procdcl
fnctdcl
ERROR

stmt
stmts SEMICOLON stmt

labels usta.t
usta.t

INT COLON
labels INT COLON

dest BECOMES expr
na.me
callO RPAR
erropt GOTO INT
erropt BEGIN stmts END
erropt IF pred THEN stmt
erropt IF pred THEN stmt ELSE stmt
erropt CASE ca.selist END
erropt CASE caselist SEMICOLON END
erropt REPEAT stmts UNTIL pred
erropt WHILE pred DO stmt
erropt FOR forva.r BECOMES forexpr TO forexpr
DO stmt

103

erropt FOR forva.r BECOMES forexpr DOWNTO forexpr
DO stmt
erropt WITH opener withlist DO stmt closer
ERROR

ERROR

na.me
lva.l

call2
ca.ll4
ca.116

104

94 call1 prname LPAR
95 callO COMMA

96 call2 call1 expr

97 call3 call2

98 call4 call3 COLON expr

99 callS call4

100 cal16 callS COLON expr

101 prname name

102 pred expr

103 case list: casehead COLON stmt

104 casehead: expr OF konst
105 I caselist SEMICOLON konst
106 I casehead COMMA konst

107 forvar name

108 forexpr expr

109 withlist: recval
110 I withlist COMMA recval

111 labeldcl: LABEL lablist SEMICOLON

112 lab list INT
113 lablist COMMA INT

114 constdcl: CONST consteqv SEMICOLON
115 I constdcl consteqv SEMICOLON

115 consteqv: ID EQ expr

117 typedcl TYP~ typeeqv SEMICOLON
118 typedcl typeeqv SEMICOLON

119 typeeqv ID EQ type

120 vardcl VAR varcore SEMICOLON
121 vardcl varcore SEMICOLON

122 varcore : idlist COLON type

123 idlist ID
124 idlist COMMA ID

125 opener

125 closer

127
128

129

130
131

132
133
134
135

procdcl

plcdcls

prcdcls

prchead

135 prcerr

137 prcret

138 pid

plcdcls block SEMICOLON closer
prchead SEMICOLON dirctiv SEMICOLON

prcdcls

prchead SEMICOLON
prcdcls del

PROCEDURE pid paropt
PROCEDURE pid paropt prcerr prcret
PROCEDURE ERROR
PROCEDURE pid ERROR

COLON type

ID

105

106

139 fnctdcl flcdcls block SEMICOLON closer
140 fnchead SEMICOLON dirctiv SEMICOLON

141 flcdcls fncdcls

142 fncdcls fnchead SEMICOLON
143 FUNCTION fid SEMICOLON
144 fncdcls del

145 fnchead FUNCTION fid paropt COLON restype
146 FUNCTION fid parpack
147 FUNCTION ERROR
148 FUNCTION fid ERROR

149 fid ID

150 restype typname
151 newtype

152 dirctiv ID
153 FORWARD

154 paropt
155 parpack

156 parpack LPAR opener pars RPAR closer
157 LPAR opener ERROR closer RPAR

158 pars par
159 pars SEMICOLON par

160 par parids COLON partype
161 VAR parids COLON partype
162 FUNCTION ffid paropt COLON restype
163 PROCEDURE fpid paropt

164 par ids ID
165 parids COMMA ID

166 partype typname
167 newtype

..
107

168 Hid ID

169 fpid ID

170 expr sexpr
171 sexpr EQ sexpr
172 sexpr NE sexpr
173 sexpr LT sexpr
174 sexpr GT sexpr
175 sexpr LE sexpr
176 sexpr GE sexpr
177 sexpr IN sexpr
178 ERROR

179 sexpr term
180 PLUS term
181 MINUS term
182 sexpr PLUS term
183 sexpr MINUS term
184 sexpr OR term

185 term factor
186 term STAR factor
187 term SLASH factor
188 term DIV factor
189 term MOD factor
190 term AND factor

191 factor name
192 lval
193 INT
194 REAL
195 STRING

\.. 196 NIL
197 fncall
198 LBRAK RBRAK
199 LBRAK members RBRAK
200 LPAR expr RPAR
201 NOT factor

...
202 lval re cval DOT ID
203 ptrval ARROW
204 subhead RBRAK

' 205 recval name
206 lval

108

207 ptrval na.me
208 lval

209 subhead arrval LBRAK expr
210 subhead COMMA expr

211 arrval na.me
212 lval

213 fncall fnpart RPAR

214 fnpart fnhead expr

215 fnhead fnna.me LPAR
216 fnpart COMMA

217 fnna.me na.me

218 members expr
219 expr UPTO expr
220 members COMMA expr
221 members COMMA expr UPTO expr

Appendix B

Recoveries Produced with and without Semantics

Although comparing the recoveries produced by the Pascal auditor with those produced

by Berkeley Pascal and the Burke-Fisher system yields impressive results, those

comparisons do not clearly demonstrate the advantages of semantics-directed error

recovery. The differences in the recoveries produced by those systems are often due to

factors that are not directly related to the use of semantics. The best test of the benefits

of using semantic data to aid in error recovery lies in comparing the recoveries produced

by the same error recovery system with and without semantics. To this end, the Pascal

auditor has been used to produce recoveries for the Ripley-Druseikis test suite both with

semantics enabled and with semantics disabled. Different recoveries were generated for

27 of the 126 programs in the test suite. This appendix contains the listings produced for

those programs where the recoveries differed. The n.umbers used to identify programs

are the numbers of their relative positions in the test sample.

109

110

1 program p005(input, output);
2 function getelement(var x. 1nteger); boolean;

38:
3
4
5
6
7
8

e - replaced ';' with
var q: integer;

begin
X :: 1

end;
begin
end.

.. '

The listing produced for program 5 with semantics enabled

1
2

*** 37:

*** 40:
3

*** 5:
4
5

*** 5:
6

*** 3:
7
8

program p005(input. output);
function getelement(var x: integer); boolean;

e - missing return type specification
e - unknown directive - treated as forward

var q: integer;

e - variable declarations must precede function declarations
begin

X := 1

e - •x• is undefined
end;

e - deleted 'end'
begin
end.

*** 3: e - inserted 'end' before '.'

The listing produced for program 5 with semantics disabled

\.

....

1 program p011(input. output);
2 var X, nonprime: integer;
3 numprime: array [1 .. 10] of integer;
4 begin
5 if nonprime = 0 then numprime,x. - numprime (x)

*** 32: e - replaced • • with . [.

*** 34: e - replaced • • with .] .
*** 47: e - replaced . (. with . [.
*** 49: e - replaced .) . with .] .

6 X - 1
7 end.

The listing produced for program 11 with semantics enabled

1
2
3
4

program p011(input. output);
var x, nonprime: integer;

numprime: array [1 .. 10] of integer;
begin

+ 1;

5 if nonprime = 0 then numprime,x. - numprime(x) + 1;

6
7

32:
34:
39:

e- replaced '.'with '['
e - replaced '.' with ']'
e - a variable appears where a function was expected

X - 1
end.

The listing produced for program 11 with semantics disabled

Ill

112

1 program p023(input. output);
2 var m. x: integer;
3 ffa.ct: real;
4 function fa.ct(n: integer) : integer;
5 begin
6 fact - 1
7 end;
8 function power(k. y: integer) : integer;
9 begin

10 power - 1
11 end;
12 begin
13 ffa.ct• (power (m. x) * exp(-m)) div (fa.ct(x));

*** 8: e - replaced 'I' with '·='
14 X - 1
15 end.

The listing produced for program 23 with semantics enabled

1
2
3
4
5
6
7
8
9

10
11
12
13

*** 3:
*** 8:

*** 31:
*** 46:

14
15

program p023(input. output);
va.r m. x: integer;

ffa.ct: real;
function fa.ct(n: integer): integer;

begin
fact := 1

end;
function power(k. y: integer): integer;

begin
power - 1

end;
begin

ffa.ct•(power(m. x) * exp(-m)) div (fa.ct(x));

e - a. variable appears where a. procedure was expected
e- deleted ' 1 '

e - deleted ')'
e- inserted')' before '·'

X - 1
end.

The listing produced for program 23 with semantics disabled

.....

1 program p024(input. output);
2 constant pi = 3.14159: real;

*** 3: e - replaced 'constant' with 'canst'
*** 24: e - deleted '.'
*** 26: e - deleted 'real'

3 var x: integer;
4 begin
5 X - 1
6 end.

The listing produced for program 24 with semantics enabled

1
2

*** 3:
*** 17:
*** 24:
*** 26:

3
4
5
6

program p024(input. output);
constant pi= 3.14159: real;

<----------->
e - replaced 'constant' with 'canst'
e - expression replaced by a constant
e - replaced ':' with '+'

e - type name appears where an expression was expected
var x: integer;

begin
X := 1

end.

The listing produced for program 24 with semantics disabled

113

114

1 program p027(input, output);
2 const maxrelations = 2;
3 var x: integer;
4 prtlrdrdata: array [1 .. 2*maxrelations] of integer;

*** 31: e - deleted '*'
*** 32: e - deleted 'maxrelations'

5 begin
6 X - 1
7 end.

The listing produced for program 27 with semantics enabled

1 program p027(input, output);
2 const maxrelations = 2;
3 var x· integer;
4 prtlrdrdata: array [1 .. 2*maxrelations] of integer;

*** 31:
*** 32:

5
6
7

e- replaced'*' with','
e - a constant appears where a type name was expected
begin

X := 1
end.

The listing produced for program 27 with semantics disabled

115

1 program p031(input. output);
2 va.r x. loc: integer;
3 function getelement(x: integer) : boolean;
4 begin
5 getelement - true;
6 end;
7 begin
8 if no

*** 6: e - deleted 'no'
9 if not getelement(lQc) then x - 1

*** 3: e - deleted 'if'
10 end.

The listing produced for program 31 with semantics enabled

1 program p031(input. output);
2 var x. loc: integer;
3 function getelement(x: integer) : boolean;
4 begin
5 getelement - true;
6 end;
7 begin
8 if no

*** 6: e - •no• is undefined
9 if not getelement(loc) then x - 1

*** 2: e - inserted 'then'
10 end.

The listing produced for program 31 with semantics disabled

116

1 program p033(input. output);
2 var x. sc, numeles: integer;
3 begin
4 sc := numeles+1];

*** 18:
5

e- deleted']'
X := 1

6 end.

The listing produced for program 33 with semantics enabled

1
2
3
4

5
6

16:
16:

program p033(input, output);
var x. sc, numeles: integer;

begin
sc := numeles+1];

e- inserted '['before '1'
e - the operands of '+' are not compatible

X - 1
end.

The listing produced for program 33 with semantics disabled

1 program p035(input, output);
2 canst listsize = 10;
3 var x : integer;
4 procedure intlkdlst(size: integer);
5 begin
6 end;
7 begin
8 intlkdlst[listsize];

*** 12:
*** 21:

9
10

e - replaced
e - replaced

X - 1
end.

. [. with
']. with

. (. .) .

The listing produced for program 35 with semantics enabled

1 program p035(input, output);
2 canst listsize = 10;
3 var x : integer;
4 procedure intlkdlst(size: integer);
5 begin
6 end;
7 begin
8 intlkdlst[listsize];

*** 3:
*** 22:

9

e - replaced procedure with variable
e - deleted '· '

X := 1

*** 3: e - deleted 'x'
10 end.

The listing produced for program 35 with semantics disabled

117

118

1 program p043(input. output);
2 var max. norel· integer;
3 x: array [1 .. 2. 1 .. 2] of integer;
4 begin
5 begin
6 if max < x[norel. 2] then
7 max - x [norel. 2]
8 end
9 real;

*** 3: e - deleted 'real'
10 max - 1
11 end.

The listing produced for program 43 with semantics enabled

1 program p043(input, output);
2 var max. norel: integer;
3 x: array [1 .. 2. 1 .. 2] of integer;
4 begin
5 begin
6 if max < x[norel. 2] then
7 max - x[norel, 2]
8 end

*** 6: e - inserted '.'
9 real;

*** 3: e - a type name appears where a procedure was expected
10 max - 1
11 end.

The listing produced for program 43 with semantics disabled

1 program p059(input. output);
2 var x. data: integer;
3 begin
4 writeln('-***error*** at least one loop exists in the'.
5 da

*** 11: e - deleted 'da'
6 data);
7 X - 1
8 end.

The listing produced for program 59 with semantics enabled

1
2
3
4
5

6
7
8

11:
13:

program p059(input, output);
var x. data: integer;

begin

e
e

writeln('-***error*** at least one loop exists in the'.
da

- 1 da• is undefined
- inserted ' ' .

data);
X - 1

end.

The listing produced for program 59 with semantics disabled

119

120

1 program p074(input, output);
2 var prime. check. x: integer;
3 begin
4 if prime check then x := 1

*** 11:
5

e - inserted '='
end.

The listing produced for program 7 4 with semantics enabled

1 program p074(input. output);
2 var prime, check, x: integer;
3 begin
4 if prime check then x := 1

*** 6:
*** 11:

5

<--------->
e - boolean expression expected
e - inserted '+'
end.

The listing produced for program 7 4 with semantics disabled

121

1 program p077(input. output);
2 canst a[l] 10; a[2] 15; a[3] 25; a[4] 3·? .. a[5] 50; a[6] 75;

<------<->------<->------<->------------------------------
*** 3: e - Malformed Declaration

*** 10: e - expression replaced by a constant

*** 10: e - inserted '=' before ' ['

*** 14: e - deleted '10'
*** 18: e - a is redeclared

*** 19: e - expression replaced by a constant

*** 19: e - inserted '=' before ' ['

*** 23: e - deleted '15'

*** 27: e - a is redeclared
*** 28: e - expression replaced by a constant

*** 28: e - inserted '=' before ' ['

*** 32: e - deleted '25'
*** 37: e - inserted '=' before ' ['

*** 40: e - inserted '+'
3 begin
4 X - 1

*** 3: e - •x• is undefined
5 end.

The listing produced for program 77 with semantics enabled

122

1 program p077(input, output);
2 canst a[1] 10; a[2] 15; a[3] 25; a[4] 3;? a[5] 50; a[6] 75;

*** 10:
*** 10:
*** 12:
*** 13:
*** 18:
*** 19:
*** 19:
*** 21:
*** 22:
*** 27:
*** 28:
*** 28:
*** 30:
*** 31:
*** 36:
*** 37:
*** 37:
*** 39:
*** 40:
*** 43:
*** 45:
*** 49:
*** 54:

3
4

<-··-> ·<-··-> ·<-··-> ·<-··)
e - expression replaced by a constant
e- inserted'=' before '['
e - the operands of '+' are not compatible
e - inserted '+'
e - a is redeclared
e - expression replaced by a constant
e- inserted'=' before '['
e - the operands of '+' are no~ compatible
e - inserted '+'
e - a is redeclared
e - expression replaced by a constant
e- inserted '='before '('
e - the operands of '+' are not compatible
e - inserted '+'
e - a is redeclared
e - expression replaced by a constant
e- inserted '='before '('
e - the operands of '+' are not compatible
e - inserted '+'
e - replaced '?' with 'begin'
e - replaced constant with variable
e- inserted '·='
e - replaced constant with variable
begin

X - 1

*** 3: e - •x• is undefined
5 end.

*** 3: e - inserted 'end' before ' '

The listing produced for program 77 with semantics disabled

1 program p078(input. output);
2 var prime, check. x: integer;
3 begin
4 if prime/check trunc(prime/check) then x - 1

*** 17:
5

e - inserted '='
end.

The listing produced for program 78 with semantics enabled

1 program p078(input. output);
2 var prime, check, x: integer;
3 begin
4 if prime/check trunc(prime/check) then x - 1

*** 6:
*** 17:

5

<----------6----------------->
e - boolean expression expected
e - inserted '+'
end.

The listing produced for program 78 with semantics enabled.
,

123

124

1
2
3
4
5

*** 5:

*** 11:
*** 28:
*** 39:

6
7
8
9

program p082(input, output);
var x: integer;
function xfact(x: integer) : integer;
begin

xfact := if X = 0 then 1. 0 else x * xfact(x - 1)

e - a function appears where a procedure was expected
e- replaced ':='with';'
e- deleted '1.0'
e- replaced '*'with'·='

end;
begin

X := 1
end.

The listing produced for program 82 with semantics enabled

1 program p082(input, output);
2 var x: integer;
3 function xfact(x: integer): integer;
4 begin
5 xfact :=if x = 0 then 1.0 else x * xfact(x- 1)

*** 5:
*** 11:
*** 28:
*** 37:
*** 39:
*** 41:

6
7
8
9

e - a function appears where a procedure was expected
e- replaced'·=' with'· •
e- deleted '1.0'
e - a parameter appears where a procedure was expected
e- replaced '*'with '·'
e - a functions appears where a procedure was expected

end;
begin

X - 1
end.

The listing produced for program 82 with semantics disabled

;~
I

1
2
3
4

5
6
7

5:
8:

23:
24:
33:

program p087(input. output);
function f(x: integer): integer;
begin

f ;=if x = 0 then 1 else x * f(x-1);

e - a function appears where a procedure was expected
e- replaced '='with ';'
e - inserted 'goto'
e - label 1 is undeclared
e - replaced '*' with '·-'

end;
begin
end.

The listing produced for program 87 with semantics enabled

1 program p087(input, output);
2 function f(x: integer) : integer;
3 begin
4 f ;: if X : 0 then 1 else x * f(x-1);

*** 5: e - a function appears where a procedure was expected

*** 8: e - replaced '=' with '.' .
*** 24: e - label 1 is undeclared

*** 25: e - inserted .. '
*** 31: e - a parameter appears where a procedure was expected

*** 33: e - replaced '*' with
*** 35: e - a functions appears where a procedure was expected

5 end;
6 begin
7 end.

The listing produced for program 87 with semantics disabled

125

126

1
2

*** 9:
*** 10
*** 10:
*** 18:
*** 20:
*** 25:
*** 29:
*** 36:
*** 40:
*** 54:
*** 55:
*** 55
*** 59:

3

*** 9:
*** 10:
*** 10•
*** 14•

4
5
6
7

program p091(input. output);
canst a(1] = 10; a(2] = 15; a(3] = 25; a[4] == 35; a[5] = 50;

·<-------·-·----·---·------·---·----------> ·<---·-->
e - a is redeclared
e - Missing/Malformed Expression
e - inserted '=' before '['
e- replaced ';'with '+'

e - •a• is undefined
e - replaced '=' with '+'

e - replaced '·' with '+'

e - replaced '=' with '+'

e - replaced '·' with '+'

e - a is redeclared
e - expression replaced by a constant
e - inserted '=' before '['
e - the operands of '-' are not compatible

a[6] = 75;
·<---·-->

e - a is redeclared
e - expression replaced by a constant
e- inserted '='before '['
e - the operands of '=' are not compatible

var x: integer;
begin

X := 1
end.

The listing produced for program 91 with semantics enabled

127

1 program p091(input, output);
2 const a[1] = 10; a[2] = 15; a[3] = 25; a[4] == 35; a[5] = 50;

*** 10:
*** 10:
*** 14:
*** 20:
*** 21:
*** 21:
*** 25:
*** 31:
*** 32:
*** 32:
*** 36:
*** 42:
*** 43:
*** 43:
*** 47:
*** 48:
*** 54:
*** 55:
*** 55:
*** 59:

3

*** 9:
*** 10:
*** 10:
*** 14:

4
5
6
7

<---·--> ·<---·--> ·<---·--> ·<---··--> ·<---·-->
e - expression replaced by a constant
e- inserted '='before '['
e - the operands of '=' are not compatible
e - a is redeclared
e - expression replaced by a constant
e- inserted '='before '['
e - the operands of '=' are not compatible
e - a is redeclared
e - expression replaced by a constant
e- inserted '='before '['
e - the operands of '=' are not compatible
e - a is redeclared
e - expression replaced by a constant
e- inserted '='before '['
e - the operands of '=' are not compatible
e - deleted '='
e - a is redeclared
e - expression replaced by a constant
e- inserted '='before '['
e - the operands of '=' are not compatible

a[6] = 75;
·<---·-->

e - a is redeclared
e - expression replaced by a constant
e- inserted '='before '['
e - the operands of '-' are not compatible

var x: integer;
begin

X - 1
end.

The listing produced for program 91 with semantics disabled

128

1 program p096(input, output);
2 var m: integer;
3 fact. stirl. x: real;
4 function pfact(f. x: real; m: integer): real;
5 begin
6 pfact := 1.0
7 end;
8 function pstirl(f. x: real; m: integer): real;
9 begin

10 pstirl - 1.0
11 end;
12 begin
13 begin
14 write(x, m, pfact(fact, x. m), pstirl(stirl, x, m),
15 pfact - pstirl)

<--->
*** 11 :

16
e - a function identifier cannot be an operand of
end.

*** 1: e- inserted 'end'

The listing produced for program 96 with semantics enabled

1 program p096(input. output);
2 var m: integer;
3 fact, stirl. x: real;
4 function pfact(f. x: real; m: integer): real;
5 begin
6 pfact := 1.0
7 end;
8 function pstirl(f. x: real; m: integer): real;
9 begin

10 pstirl - 1.0
11 end;
12 begin
13 begin

,_,

14 write(x. m. pfact(fact. x. m). pstirl(stirl, x. m),
15 pfact - pstirl)

<--->
*** 11:

16
e - a function identifier cannot be an operand of
end.

*** 3: e - inserted 'end' before '.'

The listing produced for program 96 with semantics disabled

,_,

129

1 program p101(input, output);
2 var prcount. x: integer;
3 begin
4 99 prcount - prcount;

*** 3: e - deleted '99'
5 X - 1
6 end.

The listing produced for program 101 with semantics enabled

1 program p101(input, output);
2 var prcount, x: integer;
3 begin
4 99 prcount := prcount;

*** 3: e - label 99 is undeclared
*** 5: e - inserted , . ,

5 X - 1
6 end.

The listing produced for program 101 with semantics disabled

130

1 program p104(input. output);
2 var x: integer;
3 begin
4 begin
5 X - 1
6 end;
7 procedure stirling;

*** 3: e - deleted 'procedure'

*** 13: e - deleted 'stirling'
8 begin
9 X - 1

10 end;
11 X - 1
12 end.

The listing produced for program 104 with semantics enabled

1 program p104(input. output);
2 var x: integer;
3 begin
4 begin
5 X - 1
6 end;
7 procedure stirling;

*** 3: e - deleted 'procedure'
*** 13: e - •stirling• is undefined

8 begin
9 X - 1

10 end;
11 X - 1
12 end.

The listing produced for program 104 with semantics disabled

131

1 program p106(input, output);
2 const n = 10;
3 var next, kount. x: integer;
4 arr: array [1 .. n] of integer;
5 begin
6 a.rr - [2 .. n];

<-----------)
*** 3: e - incompatible assignment

7 ko nt - o·

*** 3: e - 'ko• is undefined

*** 5: e - inserted ' '
8 next - 2·
9 X - 1

10 end.

The listing produced for program 106 with semantics enabled

1 program p106(input, output);
2 const n = 10;
3 var next, kount. x: integer;
4 arr: array [1 .. n] of integer;
5 begin
6 arr - [2 .. n];

<----------->
*** 3: e - incompatible assignment

7 ko nt - 0;

*** 3: e - 'ko• is undefined

*** 5: e - inserted '.' .
*** 6: e - •nt• is undefined

8 next - 2·
9 X - 1

10 end.

The listing produced for program 106 with semantics disabled

132

1 program p109(input, output);
2 var i. x: integer;
3 list: array (1 .. 1 0] of integer;
4 begin
5 readln(list_i?);

*** 15: e - replaced ' ' with ' ('

*** 17: e - replaced '?' with '] '
6 X - 1
7 end.

The listing produced for program 106 with semantics enabled

1
2
3
4
5

*** 11:

*** 15:
*** 17:

6
7

program p109(input. output);
var i, x: integer;

list: array (1 .. 10] of integer;
begin

readln(list_i?);

e - a variable appears where a function was expected
e- replaced ' 'with '('
e - replaced '?' with ')'

X - 1
end.

The listing produced for program 106 with semantics disabled

...

...

1
2
3
4
5
6

*** 12:
*** 14:
*** 28:
*** 30:

7
8

program p112(input, output);
var letter: char;

:r:: integer;
begin

read (letter);
if letter<>'.' and letter<>' ' then

A <->
e - the operands of '<>' are not compatible
e - a character cannot be an operand of 'and'
e - deleted '<>'
e- deleted '' ''

:r: := 1
end.

The listing produced for program 112 with semantics enabled

1
2
3
4
5
6

*** 12:
*** 14:
*** 14:
*** 28:
*** 30:

7
8

program p112(input, output);
var letter: char;

:r:: integer;
begin

read(letter);
if letter<>'.' and letter<>' ' then

A <->---------->A <->
e - the operands of '<>' are not compatible
e - a character cannot be an operand of 'and'
e - a boolean value cannot be an operand of '+'

e - replaced '<>' with '+'

e - a character cannot be an operand of '+'

:r: - 1
end.

The listing produced for program 112 with semantics disabled

133

134

1 program p115(input, output);
2 type alfa = packed array [1 .. 10] of char;
3 var buf: array [1 .. 1 0] of char;
4 a: alia;
5 list: array [1 . 10] of alia;
6 t, x: integer;
7 begin
8 pack(buf. 1. a);
9 list(t) - a,

*** 7: e - replaced ' (' with ' ['

*** 9: e - replaced ') ' with '] '
10 X - 1
11 end.

The listing produced for program 115 with semantics enabled

1
2
3
4
5
6
7
8
9

*** 3:
*** 11:

*** 14:
10
11

program p115(input. output);
type alfa =packed array [1 .. 10] of char;
var buf: array [1 .. 10] of char;

a: alia;
list: array [1 .. 10] of alfa;
t. x: integer;

begin

e
e

pack(buf, 1. a);
list(t) : = a;

- a variable appears
- replaced , ·=' with

where
'. J

e - a variable appears where
X - 1

end.

a procedure

a procedure

was

was

The listing produced for program 115 with semantics disabled

expected

expected

1
2
3
4

*** 3:
*** 31:

5
6
7
8
9

program p118(input. output);
var x: integer;

begin;
procedure factr(n: integer;

<------------------------>
e - Malformed Statement
e - Malformed Statement

begin
X := 1

end;
X := 1

end.

var factor: integer);

<------------------>

The listing produced for program 118 with semantics enabled

1 program p118(input. output);
2 var x: integer;
3 begin;
4 procedure factr(n: integer; var factor: integer);

<-----A---------> <------------------>
*** 3: e - deleted 'procedure'

*** 13: e - Malformed Statement

*** 13: e - 1 factr• is undefined

*** 19: e - •n• is undefined

*** 31: e - Malformed Statement
5 begin
6 X - 1
7 end;
8 X - 1
9 end.

The listing produced for program 118 with semantics disabled

135

136

1
2
3
4
5
6

*** 5:

*** 7:
7
8
9

*** 6:
10

*** 14:
11
12
13

program p123(input. output);
const word= 'hello';
var x. h. cntr. 1: integer;

hi: array [1 .. 10] of packed array [1 .. 5] of char;
begin

hi(h) :=word;

e- replaced '('with '['
e- replaced')' with ']'

if h <= 1 then
begin

writeln(?error sort?. cntr. h. 1,);

<-------------------------------->
e - Malformed Statement

goto 1; * abnrm *
<-------

e - Malformed Statement
end;
X :: 1

end.

The listing produced for program 123 with semantics enabled

1 program p123(input. output);
2 const word= 'hello';
3 var x. h. cntr. 1: integer;
4 hi: array [1 .. 10] of packed array [1 .. 5] of char;
5 begin
6 hi(h) :=word;

*** 3: e - a variable appears where a procedure was expected

*** 9: e - replaced J ,_, with ' ..
*** 12: e - a constant appears where a procedure was expected

7 if h <= 1 then
8 begin
9 writeln(?error sort?. cntr. h. 1.);

<-------------------------------->

*** 6: e - Malformed Statement
10 goto 1; * abnrm *

<-------

*** 14: e - Malformed Statement
11 end;
12 X - 1
13 end.

The listing produced for program 123 with semantics disabled

1 program p125(input. output);
2 type alfa = packed array [1-10] of char;

*** 30:
3
4
5
6

e - replaced '-' with '
var x: integer;

begin
X := 1

end.

The listing produce for program 125 with semantics enabled

1
2

*** 29:

*** 30:
3
4
5
6

program p125(input, output);
type alfa = packed array [1-10] of char;

<-->
e - lower bound exceeds upper bound
e - inserted ' .. ' before '-'

var x: integer;
begin

X := .1
end.

The listing produced for program 125 with semantics disabled

137

138

1
2

*** 2:
*** 25:
*** 41:

3

*** 36:
4
5
6
7

program p126(input. output);
matrixknown(name: char. lower: boolean.

e - inserted 'procedure'
e- replaced'.' with';'
e - replaced '.' with ';'

var pointer: integer): boolean;
<------->

e - return type specified for a procedure
var x: integer;

begin
X :: 1

end.

*** 6: E- Unrecoverable Syntax Error

The listing produced for program 126 with semantics enabled

1
2

*** 2:
*** 3:
*** 15:
*** 21:
*** 27:
*** 34:

3

*** 15:
*** 19:
*** 28:
*** 36:

4

*** 5:
5
6

*** 5:
7

*** 5:

program p126(input. output);
matrixknown(name: char. lower: boolea~.

e - inserted 'begin'
e - •matrixknown• is undefined
e - •name• is undefined
e - type name appears where an expression was expected
e - 1 lower• is undefined
e - type name appears where an expression was expected

var pointer: integer): boolean;

e - deleted 'var'
e - •pointer• is undefined
e - type name appears where an expression was expected
e- replaced ':'with'·'

var x: integer;
<------------>

e - Malformed Statement
begin

X - 1

e - •x• is undefined
end.

e - inserted 'end' before ' '

The listing produced for program 126 with semantics disabled

i

"

Appendix C

Programs for which Berkeley Pascal or the

Burke-Fisher System Outperform the Pascal Auditor

This appendix contains listings of the programs in the Ripley-Druseikis suite for which

Berkeley Pascal [GHJ79] or the Burke-Fisher system [BF82] produce better recoveries

than the Pascal auditor. Some listings have been altered slightly to make them fit within

the page margins. Lines that were too long to fit within the margins were split into two

lines. The listings for each program are accompanied by an note explaining why the

Pascal auditor produced an inferior recovery.

139

140

1 program p039(input, output);
2 var x. m. tim1: integer;
3 begin
4 readln(x. m);
5 tim1: 1 x;

e ------------- --- Replaced illegal character with a '='
6 X :: 1
7 end.

Berkeley Pascal's listing for program 39

1 program p039(input. output);
2 var x. m. tim1: integer;
3 begin
4 readln(x. m);
5 tim1: 1 x;

<----->
*** 3: e - Malformed Statement

6 X - 1
7 end.

The Pascal auditor's listing for program 39

Berkeley Pascal treats the compound symbol ':=' as the sequence consisting of the

symbol ':' followed by the symbol '='. Hence, it is able to repair the error in this

example by replacing the symbol "" with the symbol '='. The Pascal auditor treats the

compound symbol ':=' as a single symbol. Thus, for the Pascal auditor to achieve the

effect of the repair chosen by Berkeley Pascal, the Pascal auditor would have to replace

the individual symbols ':' and "" by the symbol ':='. However, the local recovery

algorithm used by the Pascal auditor does not possess the ability to replace a sequence of

tokens with another token. Therefore, the Pascal auditor is unable to find a viable repair

for this error.

1 program p054(input. output);
2 canst listsize = 5;
3 var listdata: array [1 .. listsize];

E --- --
E ---

4 x: integer;
5 begin
6 X - 1
7 end.

Berkeley Pascal's listing for program 54

1 program p054(input. output);
2 canst listsize = 5;
3 var listdata: array [1 .. listsize];

*** Syntax Error: Unexpected input --

Expected keyword of
Inserted identifier

•oF IDENTIFIER• inserted to match 1 ARRAY 1 on line 3

4 x: integer;
5 begin
6 X - 1
7 end.

The Burke-Fisher system's listing for program 54

1
2
3

*** 17:
4
5
6
7

program p054(input, output);
canst listsize = 5;
var listdata: array [1 .. listsize];

<------------------>
e - Missing/Malformed Type

x: integer;
begin

X := 1
end.

The Pascal auditor's listing for program 54

141

Both Berkeley Pascal and the Burke-Fisher system are able to insert two tokens in

some contexts. The Pascal auditor's local recovery algorithm is unable to insert more

than one token under any circumstances. This example demonstrates that the ability to

do multiple insertions sometimes leads to better recoveries. Because the only viable

repair for the error in this example consists of inserting two tokens, the Pascal auditor is

forced to resort to panic mode.

142

1 program p055(input, output);
2 canst listsize = 5;
3 var listptr :=array (1 .. listsize];

e ---------------------·--- Deleted '='
E -- --
E --

4 x: integer;
5 begin
6 X - 1
7 end.

Berkeley Pascal's listing for program 55

1 program p055(input, output);
2 const listsize = 5;
3 var listptr :=array (1 .. listsize];

Syntax
Syntax

Error:
Error:

•·• expected instead of •:=•
Unexpected input --

Expected keyword of
Inserted identifier

4 x:
•oF IDENTIFIER• inserted to match 1 ARRAY 1 on line 3

integer;
5 begin
6 X = 1
7 end.

The Burke-Fisher system's listing for program 55

1
2
3

*** 15:
*** 18:

4
5
6
7

program p055(input. output);
const listsize = 5;
var listptr :=array (1 .. listsize];

<------------------>
e- replaced':=' with':'
e - Missing/Malformed Type

x: integer;
begin

X := 1
end.

The Pascal auditor's listing for program 55

This example simply repeats the lesson of the previous example.

.....

'"'"'

1 program p069(input, output);
2 var sub, x. f: integer; '
3 count, listdata: array [1 .. 10] of integer;
4 begin
5 if count[listdata[sub] := 0 then

e ------------------------------- Replaced'·' with a']'
6 begin
7 f := listdata[sub];
8 end;
9 X - 1

10 end.

Berkeley Pascal's listing for program 69

1 program p069(input. output);
2 var sub, x. f: integer;
3 count. listdata: array [1 .. 10] of integer;
4 begin
5 if count[listdata[sub] := 0 then

*** Syntax Error: ·=· expected instead of I: :I

*** Syntax Error: •p expected after this token
6 begin
7 f - listdata[sub];
8 end;
9 X - 1

10 end.

The Burke-Fisher system's listing for program 69

1
2
3
4
5

program p069(input. output);
var sub, x. f: integer;
count, listdata: array [1 .. 10] of integer;

begin
if count[listdata[sub] := 0 then

<---------------------->
*** 6: e -Missing/Malformed Expression

6 begin
7 f := listdata[sub];
8 end;
9 X - 1

10 end.

The Pascal auditor's listing for program 69

143

144

Berkeley Pascal and the Burke-Fisher both handle the error in program 69 better

than the Pascal auditor. However, they find different repairs for the error. Berkeley

Pascal is able to repair the error by replacing the colon ':' in the symbol ':=' by a right

bracket ']'. This repair is possible because Berkeley Pascal treats·the compound symbol

':=' as two separate symbols (see the note for program 39 earlier in this appendix).

Neither the Burke-Fisher system nor the Pascal auditor are able to repair the error in

this manner because they treat the symbol ':=' as a single token.

The Burke-Fisher system repairs the error by replacing the symbol ':=' with the

symbol '=' and then inserting a right bracket following the constant 0. These are really

two separate repairs. The Burke-Fisher system will invoke its error recovery algorithm

twice for this example: once when it read the symbol ':=', and again when it reads the

keyword then. The Pascal auditor is unable to r.epair the error in this way because it

requires that the parser must be able to shift at least two tokens following a repair for

that repair to be considered viable. Therefore, it is unable to replace the symbol ':=' by

the symbol '=', because the parser is unable to shift the keyword then following that

repair.

1 program p073(input. output);
2 var check. prime. x: integer;
3 begin
4 check: 1?

E --------------- Expected '='
5 begin
6 while check)' prime do x := 1

E ----------------------·--- Unmatched ' for string
4 check: 1?

e ----------------·--- Replaced illegal character with a
6 while check)' prime do x := 1

E ---------------------·--- Missing/malformed expression
7 end
8 end.

Berkeley Pascal's listing for program 73

1
2
3
4

*** 3:
5
6

*** 11:
7
8

program p073(input. output);
var check. prime. x: integer;

begin
check: 1?
<-------

e - Malformed Statement
begin

while check)' prime do x := 1
<----------->

e - Missing/Malformed Expression
end

~end.

The Pascal auditor's listing for program 73

145

'.'

Berkeley Pascal finds better repairs for the errors on line 4 than does the Pascal

auditor. Although the listing that Berkeley Pascal generates does not made it clear,

Berkeley Pascal repairs the errors by inserting the character '=' following the character

':'and by replacing the character'!' with the token';'. Yet again, the fact that Berkeley

Pascal treats the compound symbol ':=' as two separate symbols allows the repair to be

done. The Pascal auditor could not have produced the same repair even if it treated the

symbol ':=' as separate symbols because it would not be able to parse far enough after

the repair for the repair to be considered viable.

146

1 program p093(input, output);
2 var i, x: integer;
3 begin
4 repeat
5 X :: 1
6 until -[sqrt(i);

***Syntax Error: Unexpected •[• ignored
7 X := 1
8 end.

The Burke-Fisher system's listing for program 93

1 program p093(input, output);
2 var i. x: integer;
3 begin
4 repeat
5 X - 1
6 until -[sqrt(i);

«<----->-
*** 9: e - boolean expression expected
*** 10: e - numeric expression expected
*** 11: e - set member type is not ord'inal
*** 18: e - inserted '] ' before '.'

7 X - 1
8 end.

The Pascal auditor's listing for program 93

Unlike either the Pascal auditor or Berkeley Pascal, the Burke-Fisher system is able

to repair errors by deleting or replacing tokens that the parser has shifted but has not

yet used in a reduction. In this example, the Burke-Fisher system is able to find a better

repair for the syntax error detected on line 6 because it is able to delete the left bracket

'['. The Pascal auditor is unable to make the same repair because the error is not

detected until the semicolon ';' has been read. Therefore, the Pascal auditor will have

already shifted all symbols up but not including the identifier i by the time it detects the

error.

147

1 program p097(input, output);
2 label 2;
3 var count. x: integer;
4 begin
5 begin
6 count - 0;
7 go to 2

*** Syntax Error: •GoTo• expected
8 end;
9 end.

The Burke-Fisher system's listing for program 97

1 program p097(input, output);
2 label 2•

3 var count. x: integer;
4 begin
5 begin
6 count - 0;
7 go to 2

A A

*** 5: e - •go• is undefined

*** 8: e - replaced 'to' with , ·='
8 end;
9 end.

The Pascal auditor's listing for program 97

The Burke-Fisher error recovery algorithm considers some types of repairs that are

not considered by the Pascal auditor. In particular, it is able to merge the texts of

adjacent tokens to form a new token. Burke and Fisher call this form of repair token

merging. In this example, the Burke-Fisher system is able to merge the identifier go and

the keyword to to form the keyword goto. The Pascal auditor does not do token

merging. Therefore, it is unable to repair the error in this example.

148

1 program p101(input, output);
2 var prcount. x: integer;
3 begin
4 99 prcount := prcount;

~ ------------- Inserted '·'
5 X := 1
6 end.

E 4 - 99 is undefined

Berkeley Pascal's listing for program 101

1 program plOl(input. output);
2 var prcount. x: integer;
3 begin
4 99 prcount := prcount;

*** Syntax Error: •·• expected after this token
5 X := 1
6 end.

The Burke-Fisher system's listing for program 101

1 program p101(input. output);
2 var prcount. x: integer;
3 begin
4 99 prcount - prcount;

*** 3: e - deleted '99'
5 X - 1
6 end.

The Pascal auditor's listing for program 101

Program 101 demonstrates that using semantics to guide the choice of a repair can

result in inferior recoveries. The number 99 on line 4 was probably intended to be a

label. However, because 99 has not been declared to be a label and because it has not

been used in a goto-statement, the Pascal auditor does not consider it a label. Therefore,

when the Pascal auditor tries inserting a colon ':' after the number 99, it detects a

semantic error. Since deleting the number 99 results in a program that is both

semantically and syntactically correct, the Pascal auditor chooses that repair over

inserting a colon.

program p123(input, output);
const word = 'hello';
var x, h. cntr, 1: integer;

1
2
3
4 hi: array [1 .. 10] of packed array [1 .. 5] of char;
5 begin
6 hi(h) :=word;

E --------·--- Replaced variable id with a procedure id
E --------------·--- Malformed statement

7 if h <= 1 then
8 begin
9 writeln(?error sort?, cntr, h. 1,);

E -------------------·--- Illegal character
E ------------------------------·--- Illegal character
E ---·--- Deleted

10 goto 1; * abnrm *
E -------------------·--- Malformed statement

11 end;
12 X := 1
13 end.

E 10 - 1 is undefined

Berkeley Pascal's listing for program 123

1
2
3

program p123(input, output);
const word= 'hello';
var x. h, cntr, 1: integer;

' '

4 hi: array [1 .. 10] of packed array [1 .. 5] of char;
5
6

*** 5:
*** 7:

7
8
9

*** 6:
10

*** 14:
11
12
13

begin
hi(h) :=word;

e- replaced '('with '['
e- replaced ')'with ']'

if h <= 1 then
begin

writeln(?error sort?, cntr, h, 1,);

<-------------------------------->
e - Malformed Statement

goto 1; * abnrm *
<-------

e - Malformed Statement
end;
X := 1

end.

The Pascal auditor's listing for program 123

149

150

Berkeley Pascal is unusual in that its lexical analyzer recognizes the character '!' as

a string quote. "Whenever '!' appears, the lexical analyzer issues an error message

announcing that it has found an illegal character. It then checks if there is another

occurrence of the character '!' on the same line, and if so, constructs a string from the

text delimited by the two question marks. Thus, Berkeley Pascal is easily able to handle

the errors on line 9. The Pascal auditor, on the other hand, treats the character '!' just

as it would any other illegal character, and so it has to resort to panic mode. Therefore,

it does not detect the later error on the same line.

Berkeley Pascal also does better than the Pascal auditor in that it notes that the

label 1 has not been declared. Because the Pascal auditor does LR(2) error checking, it

detects the error on line 10 before it has finished reducing the goto statement. The fact

that the label is undeclared is detected and an error message is sent to the standard

routine for reporting errors. However, because the error is detected while the Pascal

auditor is executing it panic mode algorithm, the error message is suppressed.

Appendix D

Some Examples for which the Pascal Auditor
Produces Better Recoveries than Berkeley Pascal

This appendix contains the listings generated for a sample of the programs for which the

Pascal auditor produces better recoveries than does Berkeley Pascal [GHJ79]. Some

listings had to be modified to make all the lines fit within the margins of the page. Also,

cautionary warning messages have been deleted. (A cautionary warning message is a

warning message caused by a suspicious but legal construct). The listings for each

program are accompanied by a note explaining the reasons for the differences in the

recoveries.

151

152

1 program p005(input. output);
2 function getelement(var x: integer); boolean;

E 2 - Function type must be specified

e --- ---
Replaced identifier with a keyword forward

3 var q: integer;
w 3 - Variable declarations should precede routine declarations

4 begin
5 X := 1

E ---------- --- Undefined variable
6 end;

E -----------·--- Expected ' '
7 begin
8 end.

In program p:
E - Unresolved forward declaration of function getelement
E - x undefined on line 5

6 end;
E ----------- --- End-of-file expected - QUIT

Berkeley Pascal's listing for program 5

1 program p005(input, output);
2 function getelement(var x: integer); boolean;

38:
3
4
5
6
7
8

e- replaced ';'with
var q: integer;

begin
X := 1

end;
begin
end.

'.'

The Pascal auditor's listing for program 5.

This example illustrates the harm caused by default reductions. Unlike ANSI

Pascal [ANS83], Berkeley Pascal treats the symbol "forward" as a keyword. The

grammar for Berkeley Pascal prohibits any symbol from appearing after the first

semicolon on line 2 other than the keyword forward and another nonstandard keyword.

Therefore, if Berkeley Pascal's parser did not do default reductions, it could not do any

reductions involving the first semicolon on line 2 before detecting a syntax error.

However, because Berkeley Pascal does do default reductions, it reduces the entire

function header including the semicolon before it detects the error. Since the semicolon

has been used in a reduction, Berkeley Pascal's local recovery algorithm cannot delete or

replace it. Therefore, it must find the best repair it can without changing the text up to

and including the semicolon.

153

If the symbol "forward" had been treated as a keyword in the Pascal auditor, the

error in this example would have been easy to handle. Any parser that avoids erroneous

default reductions would catch the error in time to permit the semicolon to be replaced

by a colon without requiring backtracking. Since the Pascal auditor does LR(2) error

checking, it will never perform an erroneous default reduction. However, the Pascal

auditor treats the symbol "forward" as an identifier rather than as a keyword. Hence,

the error is detected by a semantic guard. Therefore, the reason it is possible to replace

the semicolon in this example is that the parser for the Pascal auditor does no reductions

involving the semicolon or the identifier "boolean" before the semantic guard is executed.

154

1
2
3

program p011(input. output);
var x. nonprime: integer;

numprime: array [1 .. 10] of integer;
4 begin
5 if nonprime = 0 then numprime.x. := numprime(x) + 1;

E -------------------------------------·--- Malformed statement
6 X := 1
7 end.

Berkeley Pascal's listing for program 11

1 program p011(input, output);
2 var x. nonprime: integer;
3 numprime: array [1 .. 1 0] of integer;
4 begin
5 if nonprime = 0 then numprime.x - numprime(x) +

*** 32: e - replaced I I with I [I

*** 34: e - replaced I I with I] I

*** 47: e - replaced I (I with I [I

*** 49. e - replaced I) I with I] I

6 X - 1
7 end.

The Pascal auditor's listing for program 11

1;

Program 11 illustrates the advantages of using bracket repair. When Berkeley

Pascal considers repairing the error in this program by replacing the comma ',' by a left

bracket '[', it discovers a second error upon reading the dot '.'. The reason Berkeley

Pascal discovers the second error at that point is that it distinguishes between scalar

variables and record variables syntactically. Thus, the error that Berkeley Pascal detects

is that a scalar variable has been followed by a dot. Because of the second error,

Berkeley Pascal decides that replacing the comma by a left bracket is not a viable repair.

The Pascal auditor also tries replacing the comma by a left bracket, and it too

decides that that repair is not viable. In fact, it fails to find any viable single token

repairs. However, when it tries replacing bracket repairs, it finds that replacing the

comma by a left bracket and the dot by a right bracket allows parsing to continue for an

acceptable distance.

When the Pascal auditor attempts to reduce the second occurrence of the identifier

numprime on line 5 to a function name, it discovers a semantic error that triggers the

syntactic error recovery algorithm. None of the single token repairs attempted are found

to be satisfactory, but the bracket repair consisting of replacing the parentheses with the

corresponding square brackets is found to be the best repair for the semantic error.

1 program p020(input. output);
2 funtion getelement(var x: integer): boolean;

e ------------ Replaced identifier with a keyword procedure
E 2 - Procedures do not have types. only functions do

3 var q: integer;
4 begin
5 X := 1
6 end;
7 begin
8 end.

Berkeley Pascal's listing for program 20

1 program p020(input. output);
2 funtion getelement(var x: integer): boolean;

*** 3: e - replaced 'funtion' with 'function'
3 var q: integer;
4 begin
5 X := 1
6 end;
7 begin
8 end.

The Pascal auditor's listing for program 20

155

This example shows the value of the Pascal auditor's spelling matcher. Berkeley
Pascal attempts replacing the identifier funtion with the keyword function and with
the keyword procedure. Both repairs are found to be viable, but because procedures
tend to be more common than functions, Berkeley Pascal chooses to replace the identifier
funtion with the keyword procedure. Had Berkeley Pascal used a spelling matcher to
help determine the costs of the repairs, as does the Pascal auditor, it would have been
able to recognize that, in this instance, it is better to replace the identifier with the
keyword function.

For this particular program, the spelling matcher is not the sole factor that causes
the Pascal auditor to favor the keyword function over the keyword procedure.
Because the Pascal auditor inspects up to 12 tokens during a forward move, it discovers a
semantic error when it reaches the return type specifier at the end of the procedure
header. The error is detected semantically because there is an error production that
allows a return type specifier in a procedure header (see the explanation of rule 133 in
Appendix A). However, if there had been more than 12 tokens between the detection
point of the first error and the return type specifier, the spelling matcher alone would
have caused the Pascal auditor to favor the keyword function over the keyword
procedure.

156

1 program p023(input. output);
2 var m. x: integer;
3 !fact: real;
4 function fact(n: integer): integer;
5 begin
6 fact := 1
7 end;
8 function power(k, y: integer): integer;
9 begin

10 power - 1
11 end;
12 begin
13 ffact•(power(m. x) * exp(-m)) div (fact(x));

E ------------- --- Illegal character
14 X : = 1
15 end.

Berkeley Pascal's listing for program 23

1 program p023(input. output);
2 var m. x: integer;
3 !fact: real;
4 function fact(n: integer): integer;
5 begin
6 fact := 1
7 end;
8 function power(k, y: integer)· integer;
9 begin

10 power - 1
11 end;
12 begin
13 ffact•(power(m. x) * exp(-m)) div (fact(x));

*** 8: e- replaced ••• with'·='
14 X := 1
15 end.

The Pascal auditor's listing for program 23

Three of the examples in Appendix C showed that treating the compound symbol

':=' as two separate tokens could lead to better recoveries. Program 23 shows that

treating ':=' that way can also lead to inferior recoveries. The Pascal auditor can easily

replace the illegal token "" with the symbol ':=' because it treats ':=' as a single token.

Berkeley Pascal, however, would have to replace the token "" with the pair ':' and '='.
Berkeley Pascal does not attempt any such multi-symbol repairs.· The only other repair

that might appear to be viable is to delete the token "". However, since Berkeley Pascal

I
1..

I

I
......

1 ...

157

has reduced the identifier !fact to a variable name, that repair immediately leads to

detection of a new syntax error. Therefore, Berkeley Pascal is forced to resort to panic

mode.

158

1 program p035(input. output);
2 const listsize = 10;
3 var x : integer;
4 procedure intlkdlst(size: integer);
5 begin
6 end;
7 begin
8 intlkdlst[listsize];

E --------·--- Replaced procedure id with a array id
E --------------------------- Expected'·'

9 X := 1
10 end.

In program p035:
E - intlkdlst improperly used on line 8

Berkeley Pascal's listing for program 35

1 program p035(input. output);
2 const listsize = 10;
3 var x integer;
4 procedure intlkdlst(size: integer);
5 begin
6 end;
7 begin
8 intlkdlst[listsize];

*** 12: e - replaced . [. with . (.
*** 21: e - replaced '] . with .) .

9 X - 1
10 end.

The Pascal auditor's listing for program 35

Program 35 at first appears to be another demonstration of the advantage of

performing bracket repairs. However, closer examination of the workings of Berkeley

Pascal reveals that the poor recovery from the errors in this program are due to badly

chosen costs. Berkeley Pascal assigns a cost of 3 to replacing a procedure identifier with

an array identifier. The cost assigned to replacing a left square bracket with a left

parenthesis is 10. Therefore, even if bracket repair were considered, it would be rejected.

This contention is more clearly shown by a slightly modified example. The following

listing was produced by Berkeley Pascal:

I~

1 program p035(input, output);
2 const listsize = 10;
3 var x : integer;
4 procedure intlkdlst(size:
5 begin
6 end;
7 begin
8 intlkdlst[listsize + 1);

E ------------ Replaced procedure id
E ------------------------------

9 X := 1
10 end.

In program p035:

integer);

with a array id
Missing/malformed expression

E - intlkdlst improperly used on line 8

159

Here, it is clearly best to replace the left square bracket with a left parenthesis.

However, because of the poor choice of costs, it still chooses to replace the procedure

identifier intlkdlst with an array identifier.

160

1 program p074(input. output);
2 var prime. check. x: integer;
3 begin
4 if prime check then x := 1

e --------------------- Inserted '+'
5 end.

E 4 - Type of expression in if statement must be Boolean, not integer

Berkeley Pascal's listing for program 74

1 program p074(input, output);
2 var prime. check. x: integer;
3 begin
4 if prime check then x := 1

*** 11:
5

e - inserted '='
end.

The Pascal auditor's listing for program 74

Program 7 4 shows the advantage gained through the use of general static semantic

information during error recovery. Both the Pascal auditor and Berkeley Pascal assign a
lower cost to inserting the symbol '+' than to inserting the symbol '='. However, when

the Pascal auditor tries inserting a '+', it discovers that a semantic error will be detected
later. Therefore, it increases the cost of inserting the symbol '+'. and so inserting the
symbol '=',which does not lead to a semantic error, turns out to be the least cost repair.

Since Berkeley Pascal does not check for general static semantic errors until after parsing

has been completed, it does not detect the semantic error until it is too late to affect the
choice of recoveries.

1'-

1 program sort119(input, output);
2 canst limit = 100;
3 limitp1 = limit + 1;

E ------------------------------ --- Expected
e ------------------------------ --- Replaced

4 var x: integer;
w 3 - Label declarations should precede canst.

type. var and routine declarations
5 begin
6 X := 1
7 end.

In program sort119:
E - label 1 was declared but not defined

Berkeley Pascal's listing for program 119

1
2
3

program sort119(input. output);
canst limit = 100;

limitp1 = limit + 1;
<------->

'.'
'+' with a keyword label

*** 19:
4

e - expression replaced by a constant
var x: integer;

5
6
7

begin
X := 1

end.

The Pascal auditor's listing for program 119

161

The differences in the recoveries produced for program 119 are the result of the

Pascal auditor's more thorough use of error productions. Berkeley Pascal does not take

advantage of error productions to handle common errors that are beyond the capabilities

of its local recovery algorithm. The Pascal auditor is more complete in this respect,

though even its handling of error productions could be improved (see Section 10.2).

162

1 program p125(input. output);
2 type alfa = packed array [1-10] of char;

e ----------------------------------- Inserted '
E 2 - Range lower bound exceeds upper bound

3 var x: integer;
4 begin
5 X ;: 1
6 end.

Berkeley Pascal's listing for program 125

1 program p125(input. output);
2 type alfa = packed array [1-10] of char;

*** 30:
3
4
5
6

e - replaced '-' with '
var x: integer;

begin
X := 1

end.

The Pascal auditor's listing for program 125

The recovery that the Pascal auditor produces for program 125 is the most complex

application of semantic information for any program in the test sample. The Pascal

auditor does not choose to insert the symbol ' .. ' before the hyphen because that repair

will lead to a later semantic error. It chooses to replace the hyphen instead because that

repair does not result in any errors during the forward move. Berkeley Pascal, the

Burke-Fisher system, and the Pascal auditor with semantics disabled all choose to repair

this error by inserting the symbol ' .. ' before the hyphen. That repair is the natural

choice since insertions are normally less costly than replacements.

I
'-

I

References

[AJU75] Aho, Alfred V., Johnson, Stephen C., and Ullman, Jeffrey D., "Deterministic

Parsing of Ambiguous Grammars," Communications of the ACM 18:8,

pp. 441-452, 1975

[Amm81] Ammann, U., "The Zurich Implementation," In Pascal- The Language and

Its Implementation, edited by D. W. Barron, pp. 63-82, John Wiley and

Sons, Ltd., Chichester, 1981

[ANS74] American National Standard Programming Language COBOL, ANSI

X3.23-1974, American National Standards Institute, New York, 1974

[ANS78] American National Standard Programming Language FOKTRAN, ANSI

X3.9-1978, American National Standards Institute, New York, 1978

[ANS83] American National Standard Pascal Computer Programming Language,

ANSI/IEEE770X3.97-1983, American National Standards Institute, New

York, 1983

[AP72]

[AU77]

[BM82]

[Bro82]

Aho, Alfred V. and Peterson, Thomas G., "A Minimum Distance Error

Correcting Parser for Context-free Languages," SIAM Journal of

Computing 1:4, pp. 305-312, 1972

Aho, Alfred V. and Ullman, Jeffery D., Principles of Compiler Design,

Addison-Wesley, Reading, Mass., 1977 ,

Burke, Michael and Fisher, Gerald A., Jr., "A Practical Method for Syntactic

Error Diagnosis and Recovery," SIGPLAN Notices 17:6, pp. 67-78, 1982

Brown, Peter J., "'My System Gives Excellent Error Messages' - Or Does

It!," Software -Practice and Experience 12:1, pp. 91-94, 1982

163

164

[Bro83] Brown, Peter J., "Error Messages: the Neglected Area of the Man/Machine

Interface," Communications of the ACM 26:4, pp, 246-249, 1983

[Cul69] Culik, Karel, II, Attributed Grammars and Languages, Publication No. 3,

Department d'Informatique, Universite de Montreal, May 1969

[DoD83] U. S. Department of Defense, Military Standard - Ada Programming

Language, ANSI/MIL-STD-1815A, U. S. Government Printing Office,

Washington, D. C., 1983

[DP82] DeRemer, Franklin L. and Pennello, Thomas J., "Efficient Computation of

LALR(1) Lookahead Sets," ACM Transactions on Programming Languages

and Systems 4:4, pp. 615-649, 1982

[DR76] Druseikis, Frederick C. and Ripley, G. David, "Error Recovery for Simple

LR(k) Parsers," Proceedings of the Annual Conference of the ACM,

pp. 396-400, ACM, Inc., New York, N.Y., 1976

[FL76] Feyock, Stefan and Lazarus, Paul, "Syntax-directed Correction of Syntax

Errors," Software- Practice and Experience 6:2, pp. 207-219, 1976

[FM80] Fischer, Charles N. and Mauney, Jon, "On the Role of Error Productions in

Syntactic Error Correction," Computer Languages 5:3/4, pp. 131-140, 1980

[FMQ80] Fischer, Charles N., Milton, Donn R., and Quiring, Sam B. "Efficient LL(1)

Error Correction and Recovery Using Only Insertions," Acta

Informatica 13:2, pp. 141-154, 1980

[GHJ79] Graham, Susan L., Haley, Charles B., and Joy, William N., "Practical LR

Error Recovery," SIGPLAN Notices 14:8, pp. 168-175, 1979

[GKM83] Graham, Susan L., Kessler, Peter B., and McKusick, Marshall K., "An

Execution Profiler for Modular Programs," Software - Practice and

Experience 13:8, pp. 671-685, 1983

[GR75] Graham, Susan L. and Rhodes, Steven Paul, "Practical Syntactic Error

Recovery," Communications of the AOM 18:11, pp. 639-650, 1975

165

[Har77] Hartmann, A. C., A Concurrent Pascal Compiler for Minicomputers,

Lecture Notes in Computer Science No. 50, Springer-Verlag, Berlin, 1977

[Joh75] Johnson, Stephen C., "Yacc: Yet Another Compiler-Compiler," Computer

Science Technical Report 32, Bell Laboratories, Murray Hill, N. J., 1975

[KR78] Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language,

Prentice-Hall, Englewood Cliffs, N. J., 1978

[Knu68] Knuth, Donald E., "Semantics of Context-free Languages," Mathematical

Systems Theory 2:2, pp. 127-145, 1968, Corrigenda in Mathematical

Systems Theory 5:1, pp. 95-96, 1971

[Kos71]

[Kos73]

[Lev75]

Koster, C. H. A., "Affix Grammars," In Algol 68 Implementation, edited by

J. E. L. Peck, North-Holland, Amsterdam, 1971

Koster, C. H. A., "Error Reporting, Error Treatment, and Error Correction

in ALGOL Translation, Part 1," In Gesellschaft fUr Informatik e. V. - 2.

Jahrestagung 1972, edited by P. Deussen, Lecture Notes in Economics and

Mathematical Systems No. 78, Springer-Verlag, Berlin, 1973

Levy, Jean-Pierre, "Automatic Correction of Syntax-Errors in Programming

Languages," Acta Informatica 4:3, pp. 271-292, 1975

[LRS74] Lewis, P. M., Rosenkrantz, D. J., and Stearns, R. E., "Attributed

Translations," Journal of Computer and Systems Sciences 9:3, pp. 297-307,

1974

[Lyo74] Lyon, G., "Syntax-directed Least-errors Analysis for Context-free Languages:

a Practical Approach," Communications of the ACM 17:1, pp. 3-14, 1974

[MHW70] McKeeman, W. M., Horning J. J., and Wortman, D. B., A Compiler

Generator, Prentice-Hall, Englewood, N.J., 1970

[MKR79] Milton, D. R., Kirchhoff, L. W., and Rowland, B. R., "An ALL(1) Compiler

Generator," SIGPLAN Notices 14:8, pp. 144-157, 1979

,

166

[MM78]

[Mor70]

Mickunas, M. Dennis and Modry, John A., "Automatic Error Recovery for LR

Parsers," Communications of the ACM 21:6, pp. 459-465, 1978

Morgan, Howard L. "Spelling Correction in Systems Programs,"

Communications of the ACM 13:2, pp. 90-94, 1970

[PD77] Pennello, Thomas J. and DeRemer, Franklin L., "Practical Error Recovery for

LR Parsers," Board of Studies in Information Sciences, University of

California at Santa Cruz, Santa Cruz, December 1977

[PD78] Pennello, Thomas J. and DeRemer, Franklin L., "A Forward Move for LR

Error Recovery," Conference Record of the Fifth Annual ACM Symposium

on Principles of Programming Languages, pp. 241-254, 1978

[PK80] Pai, Ajit B. and Kieburtz, Richard B. "Global Context Recovery: a New

Strategy for Syntactic Error Recovery by Table-Driven Parsers," ACM

Transactions on Programming Languages and Systems 2:1, pp. 18-41, 1980

[Poh83] Pohlmann, Werner, "LR Parsing for Affix Grammars," Acta Informatica

20:4, pp. 283-300, 1983

[RD78] Ripley, G. David and Druseikis, Frederick C., "A Statistical Analysis of

Syntax Errors," Computer Languages 3:4, pp. 227-240, 1978

[Sch82] Schmauch, Cosima, Ein Fehlerbehandlungsalgorithmus fur LR-Attributierte

Grammatiken, Fachbereich der Informatik, Universitat Kaiserslautern, 1982

[SS83] Sippu, Seppo and Soisalon-Soininen, Eljas, "A Syntax-Error-Handling

Technique and Its Experimental Analysis," ACM Transactions on

Programming Languages and Systems 5:4, pp. 656-679, 1983

[TY79] Tarjan, Robert Endre and Yao, Andrew Chi-Chih, "Storing a Sparse Table,"

Communications of the ACM 22:11, pp. 606-611, 1979

[Wat77) Watt, David Anthony, "The Parsing Problem for Affix Grammars," Acta

Informatica 8:1, pp. 1-20, 1977

~
'

167

[Wet81] Wetherell, Charles S., "Problems with the Ada Reference Grammar,"
SIGPLAN Notices 16:9, pp. 90-104, 1981

[Wir83] Wirth, Niklaus, Programming m Modula-2, 2nd edition, Springer-Verlag,
Berlin, 1983

